Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Technical Paper

Accelerated Testing by (CSCPV) Combined Systematic Calculated Pre-Validation Method

2017-01-10
2017-26-0319
A full-bodied validation of automotive system emphasis on a comprehensive coverage of failure modes of component on one hand and evaluation with full system for the intended function of single component on the other has for long been cumbersome to most commercial vehicle manufacturers. This paper focuses on optimizing the test method in rig testing to relieve the complexity in the structural validation as whole system level. The methodology proposed by authors focuses on accelerating the vibration testing of component by compressing the validation timelines by using CSCPV (Combined Systematic Calculated and Pre Validation) method. This method selects the components of the system for validation by VFTM (Vital Few and Trivial Many) approach from existing testing database failure data and selects the worst predominant failure cases. This CSCPV method uses systematically calculated representing mass from analysis to validate the intended component alone instead of entire system.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

A Study of Sound Source Characteristics for Vehicle Airborne Transfer Function Measurement

2013-09-24
2013-01-2343
Transfer function measurements are the basis for construction of conventional test based source-path-receiver model of a vehicle. Interior noise of a vehicle can be synthesized using source excitation (both acceleration at source and near source sound pressure level) and its corresponding transfer function (Vibro-Acoustic Transfer Function (VATF) and Acoustic Transfer Function (ATF) respectively) to the interior of vehicle. Ideally ATF should be linear and independent of sound source, dependent only on size of air cavities, body structure and its material characteristics in between receiver and source location. But practically because of the type of excitation signal used to excite the sound source and characteristics of sound source itself, there is a possibility of variations in amplitude of acoustic transfer function.
Technical Paper

Development of an Objective Methodology for Assessment of Commercial Vehicle Gearshift Quality

2014-04-01
2014-01-0182
Rapid growth in the Indian economy has led to new market trends for commercial vehicles. Customers now expect high levels of comfort from all tactile points in a truck cabin; the gear lever knob is frequently used and its reactions greatly influence how a driver perceives Gear Shift Quality (GSQ) and thereby vehicle quality. The subjectivity of human perception is difficult to measure objectively; therefore this paper represents an objective methodology to correlate customer feedback of gearshift reactions. For the attribute evaluation of a set of intermediate commercial vehicles; detailed subjective appraisals were conducted by expert level assessors for GSQ sub-attributes, and a consecutive objective measurement was performed to investigate and substantiate these vehicle assessments.
Technical Paper

Effects of Steering System Friction and Jacking Force on On-Center Driving Performance in a Commercial Vehicle

2017-01-10
2017-26-0339
In heavy commercial vehicle segment in India, driver comfort and feel was largely ignored. Fierce competition in the recent years and buyer’s market trend is compelling the designers of heavy truck to focus more on the finer aspects of attribute refinements. Steering is one driver-Vehicle interface which the driver is engaged throughout. Comfort and feel in steering wheel is defined by parameters like steering effort, manoeuvrability, on-center feel & response, cornering feel & response, Torque dead band, return-ability etc. and is influenced by a long list of components and systems in the truck. This study focuses on the influences of jacking torque and steering system friction on the on-center driving performance. Experiments to measure the Jacking torque and steering system friction were conducted in the lab and subjective and objective assessments of on-center driving performance were later conducted at test track in two similar 12 Ton truck to correlate their effects.
Technical Paper

Resolution of Engine Oil Mixing with Power Steering Oil in Steering Pump by Behavioral Study

2015-09-29
2015-01-2720
Steering gear box function is one of the important requirements in heavy vehicles in order to reduce driver fatigue. Improper functioning of steering gear box not only increases the driver fatigue, also concerns the safety of the vehicle. In this present investigation, the engine oil mixing up with steering oil has been identified and steering gear box failure has been observed in the customer vehicle. The root cause of failure has been analyzed. Based on the investigations, in particular design of steering pump has been failed at customer end. The same design of steering pump were segregated and analyzed. Initial pressure mapping study has been conducted. The pressure mapping results revealed that the cavity pressure obstructs the flow of suction pressure. It indicates that obstacle at suction port due to the existence of internal leakage that causes back pressure in the internal cavity of steering pump which sucks engine oil.
Technical Paper

A Modular High Frequency Stable Orthogonal Road Load Exciter for Validation of Automotive Components

2015-09-29
2015-01-2754
The commercial vehicle industry is evolving faster with the rise in multifarious aspects deciding a company's progress. In the current scenario, vehicle performance and its reliability in the areas of payload, fuel economy, etc. play vital roles in determining its sustenance in the industry, in addition to reducing driver fatigue and improving comfort levels. Test quality and time is the key to assure and affirm, smooth and quick launch of the product into the market. This paper details on the design of Multi-Axis road data simulator which entails realistic loads onto the components for capturing meaningful information on behavior of the product and recreate the field failure modes. The design was conceptualized keeping in mind both cost (for initial installation and running cost) and time for testing without loss in the convergence factor.
Technical Paper

Coupled FEM-DEM for Determination of Payload Distribution on Tipper Load Body

2024-01-16
2024-26-0255
Tippers used for transporting blue metal, construction and mining material is designed with different types of load body to suit the material being carried, capacity and its application. These load bodies are constructed with high strength material to withstand forces under various operating conditions. Structural strength verification of load body using FEM is conducted, by modelling forces due to payload as a pressure function on the panels of the load body. The spatial variation of pressure is typically assumed. In discrete element method (DEM) granular payload material such as gravel, wet or dry sand, coal etc., can be modelled by accounting its flow and interaction with structure of load body for prediction of force/pressure distribution. In this paper, coupled FE-DEM is used for determining pressure distribution on loading surfaces of a tipper body structure of a heavy commercial vehicle during loading, unloading and transportation.
Technical Paper

Thermal Analysis of Components and Traces on Printed Circuit Boards

2024-01-16
2024-26-0279
High currents flowing through various traces of a printed circuit boards (PCB) causes thermal run away and PCB warpage due to the occurrence of high heat density. The present study discusses on steady state thermal analysis performed in a PCB kept inside an enclosure. Thermal analysis allows PCB designer to quickly move and confirm the component’s placement by examining the temperature plots predicted on the PCB surface. A PCB particularly designed for automated manual transmission (AMT) application employed in Ashok Leyland electric vehicle (EV) trucks is used for this present study. The performed simulations are preliminary level and carried out with commercially available software Altair Simlab ElectroFlo 2022.3. Simlab is a PCB level EDA (Electronic Design Automation) software suite used for design and analysis, and thus helps in minimizing the development cycles.
X