Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Possible Influences on Fuel Consumption Calculations while using the Hydrogen-Balance Method

2008-04-14
2008-01-1037
The Hydrogen-Balance equation makes it possible to calculate the fuel economy or fuel consumption of hydrogen powered vehicles simply by analyzing exhaust emissions. While the benefits of such a method are apparent, it is important to discuss possible influencing factors that may decrease Hydrogen-Balance accuracy. Measuring vehicle exhaust emissions is done with a CVS (Constant Volume Sampling) system. While the CVS system has proven itself both robust and precise over the years, utilizing it for hydrogen applications requires extra caution to retain measurement accuracy. Consideration should be given to all testing equipment, as well as the vehicle being tested. Certain environmental factors may also play a role not just in Hydrogen-Balance accuracy, but as also in other low emission testing accuracy.
Technical Paper

The Particle Number Counter as a “Black Box” - A Novel Approach to a Universal Particle Number Calibration Standard for Automotive Exhaust

2020-09-15
2020-01-2195
The reduction of vehicle exhaust particle emissions is a success story of European legislation. Various particle number (PN) counters and calibration procedures serve as tools to enforce PN emission limits during vehicle type approval (VTA) or periodical technical inspection (PTI) of in-use vehicles. Although all devices and procedures apply to the same PN-metric, they were developed for different purposes, by different stakeholder groups and for different target costs and technical scopes. Furthermore, their calibration procedures were independently defined by different stakeholder communities. This frequently leads to comparability and interpretation issues. Systematic differences of stationary and mobile PN counters (PN-PEMS) are well-documented. New, low-cost PTI PN counters will aggravate this problem. Today, tools to directly compare different instruments are scarce.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

How to Achieve Functional Safety and What Safety Standards and Risk Assessment Can Contribute

2004-03-08
2004-01-1662
In this contribution functional safety is discussed from a car manufacturer's point of view. Typical elements of a safety standard concerning safety activities during the product development process are described as well as management and other supporting processes. Emphasis is laid on the aspect of risk assessment and the determination of safety classes. Experiences with methods for safety analysis like FTA or FMEA are discussed and pros and cons of quantitative safety assessment are argued.
Technical Paper

Sizing in Conceptual Design at BMW

2004-03-08
2004-01-1657
In the early stages of conceptual design the available geometric data are very coarse and the lifespan of a design idea is very short. The structural evaluation and improvement of a design has to take both facts into account. Its focus is on the total vehicle and its performance. This can be estimated by a modeling technique, which is adequate for the lack of geometric details. Static and dynamic global stiffness as well as some aspects of crash and NVH have to be considered. Optimization will lead to the proper sizing and some indication of the potential of the structure. In order to maintain high quality standards this approach has to be supported by specialized CAE tools and extensive rules on modeling techniques and analysis procedures.
Technical Paper

Virtual testing driven development process for side impact safety

2001-06-04
2001-06-0251
A new simulation tool was established and approved by TRW as part of the continuous improvement of the development process. This tool allows the OEM and the system supplier to keep high quality even with further reduced development times. The introduction of the tool in a side air-bag development program makes it possible to ensure high development confidence with a reduced number of vehicle crash tests and late availability of interior component parts.
Technical Paper

Problems of Partial Sample Systems for Modal Raw Exhaust Mass Emission Measurement

2003-03-03
2003-01-0779
Changing of emission levels leads to an increasing demand for a satisfying solution to measure mass emissions of motor vehicles on both, engine and chassis dynamometers. Partial flow systems may fit to the demands. These systems require an exact determination of exhaust volume flow and time aligned concentration measurement. This paper will address these issues and problems related with partial flow sampling. Several exhaust flow measurement systems have been studied and integrated mass results have been checked against the full flow CVS. As the investigations indicate, modal mass calculation from sampling direct exhaust at the end of tailpipe is feasible but not a satisfying solution in equivalency and repeatability in comparison to CVS-results. This is especially the case on emission levels near or below ULEV.
Technical Paper

HC Measurements by Means of Flame Ionization: Background and Limits of Low Emission Measurement

2003-03-03
2003-01-0387
Flame Ionization Detectors (FID) can be used to detect organic hydrocarbons that occur in plastics, lacquers, adhesives, solvents and gasoline. These substances are ionized in the hydrogen flame of the FID. The ionization current that is produced depends on the amount of hydrocarbon in the sample. With the lowering of emissions limits, measuring instruments, including the FID, have to be able to detect very low values. For SULEV (Super-Ultra Low Emissions Vehicle) measurements the accuracy and also the general applicability of the CVS (Constant Volume Sampling) measuring technique are now questioned. Basic understanding is necessary to ask the right questions. One important issue is the science behind the measurement principle of the FID. And in this case especially the influence of contamination of the operating gases, cross sensitivity and data processing on the Limit of Detection (LOD).
Technical Paper

Use of a Mass Spectrometer to Continuously Monitor H2S and SO2 in Automotive Exhaust

1990-02-01
900272
In studying H2S emissions, it is desirable to have an analytical technique which is rapid, continuous, accurate and easy to use in a laboratory or vehicle exhaust environment. Typically, H2S has been measured using the EPA impinger method with collection times on the order of 1 to 2 minutes. Other techniques have been developed with significantly shorter response times. However, it has been shown that the major release of H2S occurs in less than 20 seconds after a vehicle changes from rich to lean operation. Therefore, it is highly desirable to have an H2S analytical technique with a response time of less than 10 seconds. In this paper, the benefits of use of a chemical ionization mass spectrometer (CIMS) to continuously monitor H2S and SO2, emissions are reported. Using the CIMS technique, the effects of several operating parameters on the release of H2S and SO2 from automotive catalysts were studied.
Technical Paper

Comprehensive Approach for the Chassis Control Development

2006-04-03
2006-01-1280
Handling characteristics, ride comfort and active safety are customer relevant attributes of modern premium vehicles. Electronic control units offer new possibilities to optimize vehicle performance with respect to these goals. The integration of multiple control systems, each with its own focus, leads to a high complexity. BMW and ITK Engineering have created a tool to tackle this challenge. A simulation environment to cover all development stages has been developed. Various levels of complexity are addressed by a scalable simulation model and functionality, which grows step-by-step with increasing requirements. The simulation environment ensures the coherence of the vehicle data and simulation method for development of the electronic systems. The article describes both the process of the electronic control unit (ECU) development and positive impact of an integrated tool on the entire vehicle development process.
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

1996-10-01
962041
In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

Rear Light Redundancy and Optimized Hazard Warning Signal - New Safety Functions for Vehicles

1997-02-24
970656
If a tail light bulb burns out, the failure will be detected by an electronic light check module. The missing tail light will be substituted by the stop light function. The luminous intensity of the stop light will be automatically reduced to the tail light level. If a car is equipped with rear fog lights, a faulty brake light can be substituted, similarly by a reduced rear fog light. Today the hazard warning signal has the same frequency as the turn signal indicator. If one side of a car is blocked by for example another car then it is not possible to differentiate between the aforementioned signal types. Therefore the hazard warning information is lost. The suggested new hazard warning signal consists of a double-flash with a short break, the time period is nearly unchanged.
Technical Paper

Energy Consumption of Electro-Hydraulic Steering Systems

2005-04-11
2005-01-1262
The reduction of fuel consumption in vehicles remains an important target in vehicle development to meet the carbon dioxide emission reduction target. One of the significant consumers of energy in a vehicle is the hydraulic power-assisted steering system (HPS) powered by the engine belt drive. To reduce the energy consumption an electric motor can be used to drive the pump (electro-hydraulic power steering or EHPS). In this work a simulation model was developed and validated to model the energy consumption of the whole steering system. This includes an advanced friction model for the steering rack, a physically modeled steering valve, the hydraulic pump and the electric motor with the control unit. The model is used to investigate the influence of various parameters on the energy consumption for different road situations. The results identified the important parameters influencing the power consumption and showed the potential to reduce the power consumption of the system.
Technical Paper

Robustness and Reliability Enhancement on Retractor Noise Testing, from Development Considerations to Round Robin

2018-06-13
2018-01-1533
Sensing and acting elements to guarantee the locking functions of seat belt retractors can emit noise when the retractor is subjected to externally applied vibrations. For these elements to function correctly, stiffness, inertia and friction needs to be in tune, leading to a complex motion resistance behavior, which makes it delicate to test for vibration induced noise. Requirements for a noise test are simplicity, robustness, repeatability, and independence of laboratory and test equipment. This paper reports on joint development activities for an alternative test procedure, involving three test laboratories with different equipment. In vehicle observation on parcel shelf mounted retractors, commercially available test equipment, and recent results from multi-axial component tests [1], set the frame for this work. Robustness and reliability of test results is being analyzed by means of sensitivity studies on several test parameters.
Technical Paper

Seat Belt Retractor Noise Test Correlation to 2DOF Shaker Test and Real Vehicle Comfort

2018-06-13
2018-01-1507
Seatbelt retractors as important part of modern safety systems are mounted in any automotive vehicle. Their internal locking mechanism is based on mechanically sensing elements. When the vehicle is run over rough road tracks, the retractor oscillates by spatial mode shapes and its interior components are subjected to vibrations in all 6 degrees of freedoms (DOF). Functional backlash of sensing elements cause impacts with neighbouring parts and leads to weak, but persistent rattle sound, being often rated acoustically annoying in the vehicle. Current acoustic retractor bench tests use exclusively uni-directional excitations. Therefore, a silent 2 DOF test bench is developed to investigate the effect of multi-dimensional excitation on retractor acoustics, combining two slip-tables, each driven independently by a shaker. Tests on this prototype test bench show, that cross coupling between the two perpendicular directions is less than 1%, allowing to control both directions independently.
Technical Paper

Prediction of Eigenfrequencies and Eigenmodes of Seatbelt Retractors in the Vehicle Environment, Supporting an Acoustically Optimal Retractor Integration by CAE

2018-06-13
2018-01-1543
From an acoustical point of view, the integration of seatbelt retractors in a vehicle is a real challenge that has to be met early in the vehicle development process. The buzz and rattle noise of seat belt retractors is a weak yet disturbing interior noise. Street irregularities excite the wheels and this excitation is transferred via the car body to the mounting location of the retractor. Ultimately, the inertia sensor of the locking mechanism is also excited. This excitation can be amplified by structural resonances and generate a characteristic impact noise. The objective of this paper is to describe a simulation method for an early development phase that predicts the noise-relevant low frequency local modes and consequently the contact of the retractor with the mounting panel of the car body via the finite element method.
Technical Paper

Powder Clear Coat -- A Quantum Leap in Automotive Paint Technology

2000-03-06
2000-01-1359
BMW - the driving force for progress As we approach the new millenium, to ensure the continuation of the progress into the future, BMW uses leading edge approaches in its materials research and processing. Overview production sites all over the world - Plant Dingolfing Quality requirements for automobile painting The complex and wide-ranging demands that the outer skin of an automobile has to meet offered us the chance to advance with a technological leap from liquid clear coat to the potentials of powder clear coat. The new clear coat technology The clear coat creates the ultimate gloss effect - and powder-based clear coat makes the surface of the car even more brilliant. To achieve this effect the body is covered by microscopically small paint particles. A pioneer achievement A lot of challenges in both material development and systems-engineering had to be made. The automotive world was watching, many experts said it could not be successfully used as an OEM clear coat.
Journal Article

Novel Index for Evaluation of Particle Formation Tendencies of Fuels with Different Chemical Compositions

2017-08-18
2017-01-9380
Current regulatory developments aim for stricter emission limits, increased environmental protection and purification of air on a local and global scale. In order to find solutions for a cleaner combustion process, it is necessary to identify the critical components and parameters responsible for the formation of emissions. This work provides an evaluation process for particle formation during combustion of a modern direct injection engine, which can help to create new aftertreatment techniques, such as a gasoline particle filter (GPF) system, that are fit for purpose. With the advent of “real driving emission” (RDE) regulations, which include market fuels for the particulate number testing procedure, the chemical composition and overall quality of the fuel cannot be neglected in order to yield a comparable emission test within the EU and worldwide.
X