Refine Your Search

Topic

Author

Search Results

Technical Paper

Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures Considering Fuel Economy and Battery Lifetime

2020-06-30
2020-37-0015
Hybrid electric vehicle (HEV) powertrains are characterized by a complex design environment as a result of both the large number of possible layouts and the need for dedicated energy management strategies. When selecting the most suitable hybrid powertrain architecture at an early design stage of HEVs, engineers usually focus solely on fuel economy (directly linked to tailpipe emissions) and vehicle drivability performance. However, high voltage batteries are a crucial component of HEVs as well in terms of performance and cost. This paper introduces a multitarget assessment framework for HEV powertrain architectures which considers both fuel economy and battery lifetime. A multi-objective formulation of dynamic programming is initially presented as an off-line optimal HEV energy management strategy capable of predicting both fuel economy performance and battery lifetime of HEV powertrain layout options.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Journal Article

Hydrogen Fuel Consumption Correlation between Established EPA Measurement Methods and Exhaust Emissions Measurements

2008-04-14
2008-01-1038
The development of hydrogen-fueled vehicles has created the need for established fuel consumption testing methods. Until now the EPA has only accepted three methods of hydrogen fuel consumption testing, gravimetric, PVT (stabilized pressure, volume and temperature), and Coriolis mass flow; all of which necessitate physical measurements of the fuel supply [1]. BMW has developed an equation and subsequent testing methods to accurately and effectively determine hydrogen fuel consumption in light-duty vehicles using only exhaust emissions. Known as “Hydrogen-Balance”, the new equation requires no changes to EPA procedures and only slight modifications to most existing chassis dynamometers and CVS (Constant Volume Sampling) systems. The SAE 2008-01-1036, also written by BMW, explains the background as well as required equipment and changes to the CVS testing system. This paper takes hydrogen balance further by testing it against the three EPA established forms of fuel consumption.
Journal Article

Possible Influences on Fuel Consumption Calculations while using the Hydrogen-Balance Method

2008-04-14
2008-01-1037
The Hydrogen-Balance equation makes it possible to calculate the fuel economy or fuel consumption of hydrogen powered vehicles simply by analyzing exhaust emissions. While the benefits of such a method are apparent, it is important to discuss possible influencing factors that may decrease Hydrogen-Balance accuracy. Measuring vehicle exhaust emissions is done with a CVS (Constant Volume Sampling) system. While the CVS system has proven itself both robust and precise over the years, utilizing it for hydrogen applications requires extra caution to retain measurement accuracy. Consideration should be given to all testing equipment, as well as the vehicle being tested. Certain environmental factors may also play a role not just in Hydrogen-Balance accuracy, but as also in other low emission testing accuracy.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Modelling the Use Phase of Passenger Cars in LCI

1998-11-30
982179
The results of previous Life Cycle Assessments indicate the ecological dominance of the vehicle's use phase compared to its production and recycling phase. Particularly the so-called weight-induced fuel saving coefficients point out the great spectrum (0.15 to 1.0 l/(100 kg · 100 km)) that affects the total result of the LCA significantly. The objective of this article, therefore, is to derive a physical based, i.e. scientific chargeable and practical approved, concept to determine the significant parameters of a vehicle's use phase for the Life Cycle Inventory. It turns out that - besides the aerodynamic and rolling resistance parameters and the efficiencies of the power train - the vehicle's weight, the rear axle's transmission ratio and the driven velocity profile have an important influence on a vehicle's fuel consumption.
Technical Paper

HC Measurements by Means of Flame Ionization: Background and Limits of Low Emission Measurement

2003-03-03
2003-01-0387
Flame Ionization Detectors (FID) can be used to detect organic hydrocarbons that occur in plastics, lacquers, adhesives, solvents and gasoline. These substances are ionized in the hydrogen flame of the FID. The ionization current that is produced depends on the amount of hydrocarbon in the sample. With the lowering of emissions limits, measuring instruments, including the FID, have to be able to detect very low values. For SULEV (Super-Ultra Low Emissions Vehicle) measurements the accuracy and also the general applicability of the CVS (Constant Volume Sampling) measuring technique are now questioned. Basic understanding is necessary to ask the right questions. One important issue is the science behind the measurement principle of the FID. And in this case especially the influence of contamination of the operating gases, cross sensitivity and data processing on the Limit of Detection (LOD).
Technical Paper

The New BMW Climatic Testing Complex - The Energy and Environment Test Centre

2011-04-12
2011-01-0167
The Energy and Environment Test Centre (EVZ) is a complex comprising three large climatic wind tunnels, two smaller test chambers, nine soak rooms and support infrastructure. The capabilities of the wind tunnels and chambers are varied, and as a whole give BMW the ability to test at practically all conditions experienced by their vehicles, worldwide. The three wind tunnels have been designed for differing test capabilities, but share the same air circuit design, which has been optimized for energy consumption yet is compact for its large, 8.4 m₂, nozzle cross-section. The wind tunnel test section was designed to meet demanding aerodynamic specifications, including a limit on the axial static pressure gradient and low frequency static pressure fluctuations - design parameters previously reserved for larger aerodynamic or aero-acoustic wind tunnels. The aerodynamic design was achieved, in-part, by use of computational fluid dynamics and a purpose-built model wind tunnel.
Technical Paper

Energy Efficiency and Performance of Cabin Thermal Management in Electric Vehicles

2017-03-28
2017-01-0192
The energy used for cabin cooling and heating can drastically reduce the operating range of electric vehicles. The energy efficiency and performance of the cabin heating, ventilation and air conditioning (HVAC) system depend on the system configuration and ambient conditions. The presented research investigates the energy efficiency and performance of cabin thermal management in electric vehicles. A simulation model of cabin heating and cooling systems was developed in the AMESim software. Simulations were carried out in the standard test cycles and one real-world driving cycle to take into account different driving behaviors and environments. The cabin thermal management performance was analyzed in relation to ambient temperature, system efficiency and cabin thermal balance. The simulation results showed that the driving range can shorten more than 50% in extreme cold conditions.
Technical Paper

Local Gaussian Process Regression in Order to Model Air Charge of Turbocharged Gasoline SI Engines

2016-04-05
2016-01-0624
A local Gaussian process regression approach is presented, which allows to model nonlinearities of internal combustion engines more accurate than global Gaussian process regression. By building smaller models, the prediction of local system behavior improves significantly. In order to predict a value, the algorithm chooses the nearest training points. The number of chosen training points depends on the intensity of estimated nonlinearity. After determining the training points, a model is built, the prediction performed and the model discarded. The approach is demonstrated with a benchmark system and air charge test bed measurements. The measurements are taken from a turbocharged SI gasoline engine with both variable inlet valve lift and variable inlet and exhaust valve opening angle. The results show how local Gaussian process regression outmatches global Gaussian process regression concerning model quality and nonlinearities in particular.
Technical Paper

Liquid Hydrogen Storage Systems Developed and Manufactured for the First Time for Customer Cars

2006-04-03
2006-01-0432
There is a common understanding that hydrogen has a great potential to be the fuel of the future. In addition to the challenge of developing appropriate hydrogen propulsion systems the development of hydrogen storage systems is the second big issue. Due to its high potential in cost and weight and specific storage capacity, the BMW Group is focusing on the development of liquid hydrogen storage systems. In the next hydrogen 7-Series the BMW Group is about to make for the first time the step from demonstration fleets to cars used by external users with a liquid hydrogen storage system. To realize this significant goal, special focus has to be put on high safety standards so that hydrogen can be considered as safe as common types of fuel, and on the every day reliability of the storage system. Moreover, the development of strong partnerships with suppliers is a key factor to realize the design and identify appropriate manufacturing processes.
Technical Paper

Energy Consumption of Electro-Hydraulic Steering Systems

2005-04-11
2005-01-1262
The reduction of fuel consumption in vehicles remains an important target in vehicle development to meet the carbon dioxide emission reduction target. One of the significant consumers of energy in a vehicle is the hydraulic power-assisted steering system (HPS) powered by the engine belt drive. To reduce the energy consumption an electric motor can be used to drive the pump (electro-hydraulic power steering or EHPS). In this work a simulation model was developed and validated to model the energy consumption of the whole steering system. This includes an advanced friction model for the steering rack, a physically modeled steering valve, the hydraulic pump and the electric motor with the control unit. The model is used to investigate the influence of various parameters on the energy consumption for different road situations. The results identified the important parameters influencing the power consumption and showed the potential to reduce the power consumption of the system.
Journal Article

Tackling the Complexity of Timing-Relevant Deployment Decisions in Multicore-Based Embedded Automotive Software Systems

2013-04-08
2013-01-1224
Multicore-based ECUs are increasingly used in embedded automotive software systems to allow more demanding automotive applications at moderate cost and energy consumption. Using a high number of parallel processors together with a high number of executed software components results in a practically unmanageable number of deployment alternatives to choose from. However correct deployment is one important step for reaching timing goals and acceptable latency, both also a must to reach safety goals of safety-relevant automotive applications. In this paper we focus at reducing the complexity of deployment decisions during the phases of allocation and scheduling. We tackle this complexity of deployment decisions by a mixed constructive and analytic approach.
Technical Paper

Induction Heating of Catalytic Converter Systems and its Effect on Diesel Exhaust Emissions during Cold Start

2018-04-03
2018-01-0327
In recent years, environmental regulations in the automotive industry have become increasingly strict, particularly with respect to emissions from diesel engines. Large amounts of these harmful emissions are released during the cfold start of a vehicle, due to the catalytic converter system not yet reaching its light-off temperature. This paper presents an induction heating system which heats the catalytic converter during a cold start, reducing the time for it to reach light-off temperature, and thus reducing cold-start emissions. Detailed dynamometer testing results are used to develop vehicle models of the induction heating system for a diesel Peugeot 308 light duty vehicle. The model is used to quantify the changes in hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), nitrogen oxide (NOx), and fuel consumption on a variety of standard drive cycles.
Technical Paper

Adaptive Real-Time Energy Management of a Multi-Mode Hybrid Electric Powertrain

2022-03-29
2022-01-0676
Meticulous design of the energy management control algorithm is required to exploit all fuel-saving potentials of a hybrid electric vehicle. Equivalent consumption minimization strategy is a well-known representative of on-line strategies that can give near-optimal solutions without knowing the future driving tasks. In this context, this paper aims to propose an adaptive real-time equivalent consumption minimization strategy for a multi-mode hybrid electric powertrain. With the help of road recognition and vehicle speed prediction techniques, future driving conditions can be predicted over a certain horizon. Based on the predicted power demand, the optimal equivalence factor is calculated in advance by using bisection method and implemented for the upcoming driving period. In such a way, the equivalence factor is updated periodically to achieve charge sustaining operation and optimality.
Technical Paper

Energy Management System for Input-Split Hybrid Electric Vehicle (Si-EVT) with Dynamic Coordinated Control and Mode-Transition Loss

2022-03-29
2022-01-0674
Instantaneous optimization-based energy management systems (EMS) are getting popular since they can yield near-optimal performance in unknown driving situations with minimalistic tuning parameters. However, they often disregard the drivability score of the powertrain as a performance assessment criterion, and this leads to too frequent or even infeasible mode-transitions during the multi-mode operation of a hybrid electric powertrain. Aiming to bring down the mode-transition frequency below a feasible limit, this paper proffers an instantaneous optimization-based EMS, which also accounts for the energy lost during mode-transitions into the cost function along with the electrical and chemical energy losses. The energy lost during a single mode-transition event refers to the summation of change in rotational energy for all the prime-movers, i.e., internal combustion engine and electric machines.
Technical Paper

A Computationally Lightweight Dynamic Programming Formulation for Hybrid Electric Vehicles

2022-03-29
2022-01-0671
Predicting the fuel economy capability of hybrid electric vehicle (HEV) powertrains by solving the related optimal control problem has been available for a few decades. Dynamic programming (DP) is one of the most popular techniques implemented to this end. Current research aims at integrating further powertrain modeling criteria that improve the fidelity level of the optimal HEV powertrain control behavior predicted by DP, thus corroborating the reliability of the fuel economy assessment. Dedicated methodologies need further development to avoid the curse of dimensionality which is typically associated to DP when increasing the number of control and state variables considered. This paper aims at considerably reducing the overall computational effort required by DP for HEVs by removing the state term associated to the battery state-of-charge (SOC).
Technical Paper

Communication and Information Systems - A Comparison of Ideas, Concepts and Products

2000-03-06
2000-01-0810
How can car manufacturers, which are primary mechanical engineers, become software specialists? This is a question of prime importance for car electronics in the future. Modern vehicles offer a large number of electronic and software based functions to achieve a high level of safety, fuel economy, comfort, entertainment and security which are developed under pressure of regulations, of consumers needs and of competitive time to market aspects. This contribution draws a picture, what could be important in future for in car communication and information system in terms of development process, HW & SW architectures, partnerships in automotive industry and security of industrial properties. For this purpose the automotive development is reviewed and actual examples of system designs are given.
Technical Paper

Automatic Calibrations Generation for Powertrain Controllers Using MapleSim

2018-04-03
2018-01-1458
Modern powertrains are highly complex systems whose development requires careful tuning of hundreds of parameters, called calibrations. These calibrations determine essential vehicle attributes such as performance, dynamics, fuel consumption, emissions, noise, vibrations, harshness, etc. This paper presents a methodology for automatic generation of calibrations for a powertrain-abstraction software module within the powertrain software of hybrid electric vehicles. This module hides the underlying powertrain architecture from the remaining powertrain software. The module encodes the powertrain’s torque-speed equations as calibrations. The methodology commences with modeling the powertrain in MapleSim, a multi-domain modeling and simulation tool. Then, the underlying mathematical representation of the modeled powertrain is generated from the MapleSim model using Maple, MapleSim’s symbolic engine.
X