Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

The Development of BMW Catalyst Concepts for LEV / ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst

1998-02-23
980418
To meet LEV and EU Stage III emission requirements, it is necessary for new catalytic converters to be designed which exceed light-off temperature as quickly as possible. The technical solutions are secondary air injection, active heating systems such as the electrically heated catalytic converter, and the close coupled catalytic converter. Engine control functions are extensively used to heat the converter and will to play a significant role in the future. The concept of relocating the converter to a position close to the engine in an existing vehicle involves new conflicts. Examples include the space requirements, the thermal resistance of the catalytic coating and high temperature loads in the engine compartment.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

HC Measurements by Means of Flame Ionization: Background and Limits of Low Emission Measurement

2003-03-03
2003-01-0387
Flame Ionization Detectors (FID) can be used to detect organic hydrocarbons that occur in plastics, lacquers, adhesives, solvents and gasoline. These substances are ionized in the hydrogen flame of the FID. The ionization current that is produced depends on the amount of hydrocarbon in the sample. With the lowering of emissions limits, measuring instruments, including the FID, have to be able to detect very low values. For SULEV (Super-Ultra Low Emissions Vehicle) measurements the accuracy and also the general applicability of the CVS (Constant Volume Sampling) measuring technique are now questioned. Basic understanding is necessary to ask the right questions. One important issue is the science behind the measurement principle of the FID. And in this case especially the influence of contamination of the operating gases, cross sensitivity and data processing on the Limit of Detection (LOD).
Technical Paper

Use of a Mass Spectrometer to Continuously Monitor H2S and SO2 in Automotive Exhaust

1990-02-01
900272
In studying H2S emissions, it is desirable to have an analytical technique which is rapid, continuous, accurate and easy to use in a laboratory or vehicle exhaust environment. Typically, H2S has been measured using the EPA impinger method with collection times on the order of 1 to 2 minutes. Other techniques have been developed with significantly shorter response times. However, it has been shown that the major release of H2S occurs in less than 20 seconds after a vehicle changes from rich to lean operation. Therefore, it is highly desirable to have an H2S analytical technique with a response time of less than 10 seconds. In this paper, the benefits of use of a chemical ionization mass spectrometer (CIMS) to continuously monitor H2S and SO2, emissions are reported. Using the CIMS technique, the effects of several operating parameters on the release of H2S and SO2 from automotive catalysts were studied.
Technical Paper

The “Two-in-One” Engine - Porsche's Variable Valve System (VVS)

1998-02-23
980766
Driving fun - one of the major thrills expected by the buyers of high-performance cars - must be absolutely preserved despite all the measures required to further reduce the car's exhaust emissions and fuel consumption. Powerful engines with high BMEP levels require large unrestricted inlet and outlet valve diameters and lifts as well as a wide camshaft phasing range at least on the intake side. In terms of exhaust emissions and fuel economy such an engine layout is rather unfavourable. Its inherent drawbacks, however, can be compensated by providing for what might be called a “two-in-one” configuration which combines a low-emission concept including intake-valve lift shifting and exhaust-camshaft phasing with a high-performance-engine concept complete with a wide intake camshaft phasing range and large intake valve lifts and a Varioram intake system. With this basic layout, even high-performance sports cars are able of falling below the current ULEV limits.
Technical Paper

Heated Catalytic Converter Competing Technologies to Meet LEV Emission Standards

1994-03-01
940470
Apart from the reduction of engine-out emissions from the powerplant, the development of an efficient and reliable catalytic converter heating system is an important task of automotive engineering in the future to meet standards that will require reduction of cold start emissions. Carrying out a comprehensive study in this field, BMW has tested and evaluated possible solutions to this challenge. In additon to the electrically heated catalytic converter (E-cat) and the afterburner chamber, an incorporated burner system would meet the requirement for fast catalyst light-off in the future, particularly in the case of larger engines.
Technical Paper

Dynamic Laser Analysis of Exhaust Gas

1994-03-01
940825
In order to achieve the emission levels required for Low Emission Vehicles (LEV) and Ultra Low Emission Vehicles (ULEV) it is necessary to obtain insight into emission reactions to the motor management systems during transient engine performance. The optimisation of transients in typical driving profiles, such as shifting, acceleration load reversal, necessitates suitable gas measurement equipment. A technique capable to resolve one combustion cycle consists in spectroscopic gas analysis by using tunable infrared diode lasers. This paper describes the available equipment and demonstrates that a diode laser system fulfils the specific demands for the analysis of transient operating characteristics of engine management systems.
Technical Paper

Electrically Heated Catalytic Converter (EHC) in the BMW ALPINA B12 5.7 Switch-Tronic

1996-02-01
960349
The production of the BMW ALPINA B12 5.7 with Switch-Tronic transmission provides the markets of Europe and Japan with an exclusive, luxury-orientated, high performance limited series limousine. This is the first vehicle worldwide to be fitted with the progressive exhaust gas aftertreatment technology known as the Electrically Heated Catalyst (EHC), in which the effectiveness of the power utilized is increased significantly by an alternating heating process for both catalytic converters. Only since this achievement has the implementation of the EHC been viable without extensive modification to the battery and alternator. With this exhaust gas aftertreatment concept, the emissions of this high performance vehicle will fall to less than half the maximum permissible for compliance with 1996 emission standards.
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

1996-10-01
962041
In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

The Influence of eFuel Formulation on Post Oxidation and Cold Start Emissions

2021-04-06
2021-01-0632
The goal of reducing the impact of road transportation on the environment can be reached by different approaches. The use of non-fossil synthetic fuels from renewable energy sources in the entire fleet of internal combustion engine vehicles is only one promising pathway to minimize the vehicle’s carbon footprint during the use phase. The steadily tightening emissions legislation confront the developers of future combustion engines with major challenges: Historically, the chemical and physical improvement of the combustion process, tail pipe emissions reduction and the development of optimized after-treatment systems were linked to improvements in fuel quality. In order to further decrease exhaust gas emissions, the optimization of the chemical composition of renewable fuels are a basic requirement.
Technical Paper

Plasma Enhanced Selective Catalytic Reduction of NOx in Diesel Exhaust: Test Bench Measurements

1999-10-25
1999-01-3633
The potential of plasma enhanced selective catalytic reduction (PE-SCR) for Diesel-exhaust treatment at temperatures between 60 °C and 180 °C has been investigated in test bench measurements with a 1.9 liter 66 kW VW Passat TDI engine. Non-thermal plasmas were generated by pulsed electrical excitation of dielectric barrier discharge (DBD) modules each having a flow cross section of 9.5 cm2 and an electrode length of 26 cm. Monolithic V2O5-WO3/TiO2-catalysts with cell densities of 150 cpsi and 200 cpsi were used for selective catalytic reduction. First experiments were performed with a single DBD module and a catalyst volume of 3.5 liters. For temperatures between 100 °C and 160 °C and exhaust gas flow rates below 1200 liters (STP)/min NOx-reduction rates up to 14 g/h were obtained with an energy cost of about 20 Wh/g NOx. At larger gas flow rates NOx-reduction rates decreased even at higher temperatures.
Technical Paper

The Development of a BMW Catalyst Concept for LEV/EU3 Legislation for a 8 Cylinder Engine by Using Thin Wall Ceramic Substrates

1999-03-01
1999-01-0767
For the BMW V8 engine, a new LEV/EU3 emission concept has been developed by improvements to the previous engine management and secondary air supply and a complete new exhaust system. Beside the emission limits, also high engine output targets and high operating reliability were targeted. In addition the new exhaust system had to meet low cost targets. Based on these requirements an exhaust concept with separate pre catalyst and main catalyst was chosen. To reduce the heat mass and to optimize the pressure drop, 4.3mil/400cpsi thin wall ceramic substrates were used for the pre and main catalyst.
Technical Paper

ECU Integrated DSP Based Measurement System for Combustion Analysis

2000-03-06
2000-01-0547
For development of new engines a ‘general purpose ECU’ for spark ignition engines with up to 12 cylinders has been developed. As part of this ECU a DSP (Digital Signal Processor)-based measurement unit for high frequency combustion analysis has been integrated. In this paper, details about this signal processing platform are given. The DSP-unit has 24 analog input channels. 12 channels are used for cylinder pressure measurement; the other 12 channels are general purpose ones. For example, they can be used for ionic current analysis. Additional digital inputs allow measurement of crank speed and crank speed variations. This is an important topic for misfire detection as part of the OBD regulations.
Technical Paper

A Physical-Based Approach for Modeling the Influence of Different Operating Parameters on the Dependency of External EGR Rate and Indicated Efficiency

2018-09-10
2018-01-1736
External Exhaust Gas Recirculation (EGR) provides an opportunity to increase the efficiency of turbocharged spark-ignition engines. Of the competing technologies and configurations, Low-Pressure EGR (LP-EGR) is the most challenging in terms of its dynamic behavior. Only some of the stationary feasible potential can be used during dynamic engine operation. To guarantee fuel consumption-optimized engine operation with no instabilities, a load point-dependent limitation of the EGR rate or alternatively an adaptation of the operating point to the actual EGR rate is crucial. For this purpose, a precise knowledge of efficiency and combustion variance is necessary. Since the operating state includes the actual EGR rate, it has an additional dimension, which usually results in an immense measuring effort.
Technical Paper

Analysis of Water Injection Strategies to Exploit the Thermodynamic Effects of Water in Gasoline Engines by Means of a 3D-CFD Virtual Test Bench

2019-09-09
2019-24-0102
CO2 emission constraints taking effect from 2020 lead to further investigations of technologies to lower knock sensitivity of gasoline engines, main limiting factor to increase engine efficiency and thus reduce fuel consumption. Moreover the RDE cycle demands for higher power operation, where fuel enrichment is needed for component protection. To achieve high efficiency, the engine should be run at stoichiometric conditions in order to have better emission control and reduce fuel consumption. Among others, water injection is a promising technology to improve engine combustion efficiency, by mainly reducing knock sensitivity and to keep high conversion rates of the TWC over the whole engine map. The comprehension of multiple thermodynamic effects of water injection through 3D-CFD simulations and their exploitation to enhance the engine combustion efficiency is the main purpose of the analysis.
Journal Article

Analysis of the Water Addition Efficiency on Knock Suppression for Different Octane Ratings

2020-04-14
2020-01-0551
Water injection can be applied to spark ignited gasoline engines to increase the Knock Limit Spark Advance and improve the thermal efficiency. The Knock Limit Spark Advance potential of 6 °CA to 11 °CA is shown by many research groups for EN228 gasoline fuel using experimental and simulation methods. The influence of water is multi-layered since it reduces the in-cylinder temperature by vaporization and higher heat capacity of the fresh gas, it changes the chemical equilibrium in the end gas and increases the ignition delay and decreases the laminar flame speed. The aim of this work is to extend the analysis of water addition to different octane ratings. The simulation method used for the analysis consists of a detailed reaction scheme for gasoline fuels, the Quasi-Dimensional Stochastic Reactor Model and the Detonation Diagram. The detailed reaction scheme is used to create the dual fuel laminar flame speed and combustion chemistry look-up tables.
Technical Paper

Experimental Demonstration of a High-Efficiency Split-Intake D-EGR Engine Concept

2023-04-11
2023-01-0237
Dedicated-EGR™ (D-EGR™) is a concept where the exhaust of one dedicated cylinder (D-Cyl) is routed into the intake thus producing EGR to be used by the whole engine. The D-Cyl operates rich of stochiometric which produces syngas that enhances the EGR stream permitting faster combustion and greater knock mitigation. Operating an engine using D-EGR improves the knock resistance which can permit a higher compression ratio (CR) thereby increasing efficiency. One challenge of traditional D-EGR is that the D-Cyl combustion becomes unstable operating with both rich and EGR dilute conditions. Therefore, the ‘Split Intake D-EGR’ concept seeks to resolve this problem by feeding fresh air to the D-Cyl, thus allowing even richer operation in the D-Cyl which further increases the H2 and CO yield thereby enhancing the efficiency benefits.
Technical Paper

Studies on Enhanced CVS Technology to Achieve SULEV Certification

2002-03-04
2002-01-0048
For the measurement of exhaust emissions, Constant Volume Sampling (CVS) technology is recommended by legislation and has proven its practical capability in the past. However, the introduction of new low emission standards has raised questions regarding the accuracy and variability of the CVS system when measuring very low emission levels. This paper will show that CVS has the potential to achieve sufficient precision for certification of SULEV concepts. Thus, there is no need for the introduction of new test methods involving high cost. An analysis of the CVS basic equations indicates the importance of the Dilution Factor (DF) for calculating true mass emissions. A test series will demonstrate that, by adjusting the dilution and using state of the art analyzers, the consistency of exhaust results is comparable with those of LEV concepts, measured with conventional CVS systems and former standard analyzers.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
X