Refine Your Search

Topic

Author

Search Results

Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Journal Article

Diagnostics Design Process for Developmental Vehicles

2010-04-12
2010-01-0247
In this paper a diagnostic design process is proposed for developmental vehicles where mainstream design process is not well-suited. First a review of current practice in on-board vehicle fault diagnostics design is presented with particular focus on the application of this process to the development of the Ford Escape Hybrid Electric Vehicle (HEV) program and a demonstration Fuel Cell Electric Vehicle (FCEV) program. Based on the review and evaluation of these experiences, a new tool for diagnostics design is proposed that promises to make the design more traceable, to reduce the repetition of work, and to improve understandability and reuse.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Investigation and Development of Fuel Slosh CAE Methodologies

2014-04-01
2014-01-1632
When a vehicle with a partially filled fuel tank undergoes sudden acceleration, braking, turning or pitching motion, fuel sloshing is experienced. It is important to establish a CAE methodology to accurately predict slosh phenomenon. Fuel slosh can lead to many failure modes such as noise, erroneous fuel indication, irregular fuel supply at low fuel level and durability issues caused by high impact forces on tank surface and internal parts. This paper summarizes activities carried out by the fuel system team at Ford Motor Company to develop and validate such CAE methodology. In particular two methods are discussed here. The first method is Volume Of Fluid (VOF) based incompressible multiphase Eulerian transient CAE method. The CFD solvers used here are Star CD and Star CCM+. The second method incorporates Fluid-Structure interaction (FSI) using Arbitrary Lagrangian-Eulerian (ALE) formulation.
Journal Article

A Stochastic Bias Corrected Response Surface Method and its Application to Reliability-Based Design Optimization

2014-04-01
2014-01-0731
In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affect the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. This paper further investigates the Bayesian inference based model extrapolation method which is previously proposed by the authors, and provides a systematic and integrated stochastic bias corrected model extrapolation and robustness design process under uncertainty. A real world vehicle design example is used to demonstrate the validity of the proposed method.
Journal Article

An Iterative Application of Multi-Disciplinary Optimization for Vehicle Body Weight Reduction Based on 2015 Mustang Product Development

2015-04-14
2015-01-0470
Designing a vehicle body involves meeting numerous performance requirements related to different attributes such as NVH, Durability, Safety, and others. Multi-Disciplinary Optimization (MDO) is an efficient way to develop a design that optimizes vehicle performance while minimizing the weight. Since a body design evolves in course of the product development cycle, it is essential to repeat the MDO process several times as a design matures and more accurate data become available. This paper presents a real life application of the MDO process to reduce weight while optimizing performance over the design cycle of the 2015 Mustang. The paper discusses the timing and results of the applied Multi-Disciplinary Optimization process. The attributes considered during optimization include Safety, Durability and Body NVH. Several iterations of MDO have been performed at different milestones in the design cycle leading to a significant weight reduction of the already optimized design by over 16kg.
Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Technical Paper

Two Piece Composite Truck Cab

1990-02-01
900306
This report is a comprehensive investigation into the use of resin transfer molded glass fiber reinforced plastics in a structural application. A pickup truck cab structure is an ideal application for plastic composites. The cab is designed to fit a production Ranger pickup truck and uses carryover frame and front end structure. The cab concept consists primarily of two molded pieces. This design demonstrates extensive parts integration and allows for low-cost tooling, along with automated assembly.
Technical Paper

Achieving Design Target in the Presence of Functional Coupling

2007-04-16
2007-01-1208
The primary objective of design is to achieve the target value of its function. While principles and techniques of Robust Design address the issue of achieving target values in the presence of different types of variations and disturbances, there exists a unique challenge in achieving design targets when multiple response functions are interrelated. In order to overcome the challenge, we must avoid functional couplings and obtain the interrelationship structure as flexible as possible. In the Axiomatic Design process, such interrelationships are represented by coupling terms in a design matrix. From the targeting aspect of design, it is important to achieve a desirable design matrix structure to, first, avoid any functional coupling in a design matrix and, secondly, maximize allowable sequences of adjusting DPs.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Composite Impact Analysis of Race Cars - Technology Transfer to Passenger Car Development

1998-11-16
983092
There are a number of benefits from Ford Motor Company's participation in motorsports. This paper will describe how an engineering team developed a CAE process to assist in the design of a race car to meet impact requirements, with the technology transfer benefit of improved impact performance of composite structures in passenger cars. In 1997/98, a CAE process was developed and applied in the design and test of Formula One race car composite impact structures. For this particular engineering effort, a Ford proprietary software program, COMP-COLLAPSE, was the primary analysis tool that was utilized to successfully predict impact performance. As a result, COMP-COLLAPSE was used extensively in the design of race car composite impact structures. There were two beneficiaries from this effort: Race Vehicles: Improved vehicle impact performance as well as design improvement in crush efficiency, packaging, weight, and manufacturing.
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

2001-04-30
2001-01-1505
Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

Frictional and Acoustic Behavior of Automotive Interior Polymeric Material Pairs Under Environmental Conditions

2001-04-30
2001-01-1550
As automotive manufacturers continue to increase their use of thermoplastics for interior and exterior components, there is a likelihood of squeaks due to material contacts. To address this issue, Ford's Body Chassis NVH Squeak and Rattle Prevention Engineering Department has developed a tester that can measure friction, and any accompanying audible sound, as a function of sliding velocity, normal load, surface roughness, and environmental factors. The Ford team has been using the tester to address manufacturing plant issues and to develop a database of polymeric material pairings that will be used as a guide for current and future designs to eliminate potential noise concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, we are in the process of developing an analytical model which will be a tool to predict frictional behavior.
Technical Paper

Eliminating Piston Slap through a Design for Robustness CAE Approach

2003-05-05
2003-01-1728
Piston slap is a problem that plagues many engines. One of the most difficult aspects of designing to eliminate piston slap is that slight differences in operating conditions and in part geometries from build to build can create large differences in the magnitude of piston slap. In this paper we will describe a design for robustness CAE approach to eliminating piston slap. This approach considers the variations of the significant control factors in the design, e.g. piston pin offset, piston skirt design, etc. as well as the variation in the noise factors the system is subjected to, e.g. assembly clearance, skirt collapse, peak cylinder pressure, cylinder pressure rise rate, and location of peak cylinder pressure. Using analytical knowledge about how these various factors impact the generation of piston slap, a piston design for low levels of piston slap can be determined that is robust to the various noise factors.
Technical Paper

The New EMC Challenges to Design Vehicle with Consumer Electronics Devices

2011-10-04
2011-36-0347
The last ten years have experienced a massive integration of consumer electronics devices in vehicles such as mobile phones, audio and video players, USB devices, and internet access capability. Consumers are now demanding the integration of portable and home devices to vehicle systems transforming it to an extension of the home and office thus providing entertainment and connectivity to both short and long trips The integration of devices that were not designed or specified to operate in the vehicle environment has imposed challenges to the engineers designing vehicle electronics systems in particular to the EMC engineers. The need to design the subsystems that are completely integrated with the consumer electronics devices and also compliant with the car makers current specifications has proven to be a major issue due to the fact that one of the components, the consumer electronic devices, cannot be controlled.
Technical Paper

Correlation of Dominant Noise Transfer Paths in Statistical Energy Analysis Vehicle Model from Test as Basis for Variant Vehicle Development

2013-05-13
2013-01-1994
For purposes of reducing development time, cost and risk, the majority of new vehicles are derived strongly or at least generally from a surrogate vehicle, often of the same general size or body style. Previous test data and lessons learned can be applied as a starting point for design of the new vehicle, especially at early phases of the design before definite design decisions have been finalized and before prototype of production test hardware is available. This is true as well of vehicle NVH development where most new vehicles being developed are variants of existing vehicles for which the main noise transfer paths from sources of interest are already understood via test results and existing targets. The NVH targets for new vehicles are defined via benchmarking, market considerations, and other higher-level decisions. The objective is then to bridge the gap between test data from surrogate vehicles to direct support of the NVH development of new vehicle programs.
Technical Paper

Development and Implementation of a Powertrain Electrical System Simulator with Computer-Controlled Fault Generation

2006-04-03
2006-01-1599
To manage the function of a vehicle's engine, transmission, and related subsystems, almost all modern vehicles make use of one or more electronic controllers running embedded software, henceforth referred to as a Powertrain Controller System or PCS. Fully validating this PCS is a necessary step of vehicle development, and the validation process requires extensive amounts of testing. Within the automotive industry, more and more of this validation testing is being performed using Hardware-in-the-Loop (HIL) simulators to automate the extensive test sequences. A HIL simulation typically mates the physical PCS to a closed-loop real time computer simulation of a powertrain. Interfacing the physical PCS hardware to a powertrain simulation requires the HIL simulator to have extensive signal input/output (I/O) electronics and simulated actuator electrical loading.
Technical Paper

Chain Representations of Dimensional Control: A Producibility Input for Concurrent Concept Design

1998-06-02
981846
Two critical milestones that must be achieved during concept design are 1) definition of a product architecture that meets performance, producibility, and strategic objectives, and 2) estimation of the integration risk in each candidate concept. This paper addresses these issues by describing the role played by the producibility members of an Integrated Product Team (IPT) during concept design. Our focus is on the execution of the what we call the “chain method”, which illustrates the structure of function delivery in a concept in a simple pictorial way and helps the IPT to understand the advantages or disadvantages of using a modular or an integral product architecture. The producibility members play a central role in capturing and evaluating the chains for different candidate concepts and decompositions.
Technical Paper

The Effect of Valve Overlap on Idle Operation: Comparison of Model and Experiment

1993-10-01
932751
Validation of the Ford General Engine SIMulation program (GESIM) with measured firing data from a modified single cylinder Ricardo HYDRA research engine is described. GESIM predictions for peak cylinder pressure and burn duration are compared to test results at idle operating conditions over a wide range of valve overlap. The calibration of GESIM was determined using data from only one representative world-wide operating point and left unchanged for the remainder of the study. Valve overlap was varied by as much as 36° from its base setting. In most cases, agreement between model and data was within the accuracy of the measurements. A cycle simulation computer model provides the researcher with an invaluable tool for acquiring insight into the thermodynamic and fluid mechanical processes occurring in the cylinder of an internal combustion engine.
X