Refine Your Search

Topic

Author

Search Results

Journal Article

Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality

2014-09-16
2014-01-2241
A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Journal Article

IIoT-Enabled Production System for Composite Intensive Vehicle Manufacturing

2017-03-28
2017-01-0290
The advancements in automation, big data computing and high bandwidth networking has expedited the realization of Industrial Internet of Things (IIoT). IIoT has made inroads into many sectors including automotive, semiconductors, electronics, etc. Particularly, it has created numerous opportunities in the automotive manufacturing sector to realize the new aura of platform concepts such as smart material flow control. This paper provides a thought provoking application of IIoT in automotive composites body shop. By creating a digital twin for every physical part, we no longer need to adhere to the conventional manufacturing processes and layouts, thus opening up new opportunities in terms of equipment and space utilization. The century-old philosophy of the assembly line might not be the best layout for vehicle manufacturing, thus proposing a novel assembly grid layout inspired from a colony of ants working to accomplish a common goal.
Technical Paper

Benchmarking the Localization Accuracy of 2D SLAM Algorithms on Mobile Robotic Platforms

2020-04-14
2020-01-1021
Simultaneous Localization and Mapping (SLAM) algorithms are extensively utilized within the field of autonomous navigation. In particular, numerous open-source Robot Operating System (ROS) based SLAM solutions, such as Gmapping, Hector, Cartographer etc., have simplified deployments in application. However, establishing the accuracy and precision of these ‘out-of-the-box’ SLAM algorithms is necessary for improving the accuracy and precision of further applications such as planning, navigation, controls. Existing benchmarking literature largely focused on validating SLAM algorithms based upon the quality of the generated maps. In this paper, however, we focus on examining the localization accuracy of existing 2-dimensional LiDAR based indoor SLAM algorithms. The fidelity of these implementations is compared against the OptiTrack motion capture system which is capable of tracking moving objects at sub-millimeter level precision.
Technical Paper

Capability-Driven Adaptive Task Distribution for Flexible Multi-Human-Multi-Robot (MH-MR) Manufacturing Systems

2020-04-14
2020-01-1303
Collaborative robots are more and more used in smart manufacturing because of their capability to work beside and collaborate with human workers. With the deployment of these robots, manufacturing tasks are more inclined to be accomplished by multiple humans and multiple robots (MH-MR) through teaming effort. In such MH-MR collaboration scenarios, the task distribution among the multiple humans and multiple robots is very critical to efficiency. It is also more challenging due to the heterogeneity of different agents. Existing approaches in task distribution among multiple agents mostly consider humans with assumed or known capabilities. However human capabilities are always changing due to various factors, which may lead to suboptimal efficiency. Although some researches have studied several human factors in manufacturing and applied them to adjust the robot task and behaviors.
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

Compliant Link Suspension

2009-04-20
2009-01-0225
This paper discusses a compliant link suspension concept developed for use on a high performance automobile. This suspension uses compliant or flexible members to integrate energy storage and kinematic guidance functions. The goal of the design was to achieve similar elasto-kinematic performance compared to a benchmark OEM suspension, while employing fewer components and having reduced mass and complexity, and potentially providing packaging advantages. The proposed suspension system replaces a control arm in the existing suspension with a ternary supported compliant link that stores energy in bending during suspension vertical motion. The design was refined iteratively by using a computational model to simulate the elasto-kinematic performance as the dimensions and attachment point locations of the compliant link were varied, until the predicted performance closely matched the performance of the benchmark suspension.
Technical Paper

A Morphological, Combinatory Tool for Design of Low-Gap Automotive Body Panels

2009-04-20
2009-01-0342
This paper proposes a conceptual design tool that could direct designers towards concepts that lead to reduced gaps on the exterior of an automobile. Apart from the manufacturing and assembly tolerance stack up, the design and integration method of the body panels in an automobile contribute to the gap. . A benchmark study suggested cursory concepts to avoid or minimize the gaps. The proposed design tool uses a modified morphological chart approach to populate a table with concepts obtained from the benchmark study and by other means. The design tool also incorporates decision alternatives and hence is different from a morphological chart. The design tool can be used to highlight the occurrence of a high level tolerance stack up chain on the structural/mounting members. Conceptual component architectures are arranged in such a fashion to facilitate combinations through visual means.
Technical Paper

Development of Endurance Testing Apparatus Simulating Wheel Dynamics and Environment on Lunar Terrain

2010-04-12
2010-01-0765
This paper entails the design and development of a NASA testing system used to simulate wheel operation in a lunar environment under different loading conditions. The test system was developed to test the design of advanced nonpneumatic wheels to be used on the NASA All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE). The ATHLETE, allowing for easy maneuverability around the lunar surface, provides the capability for many research and exploration opportunities on the lunar surface that were not previously possible. Each leg, having six degrees of freedom, allows the ATHLETE to accomplish many tasks not available on other extra-terrestrial exploration platforms. The robotic vehicle is expected to last longer than previous lunar rovers.
Technical Paper

Design of an Open-Loop Steering Robot Profile for Double Lane Change Maneuver Using Simulation

2010-04-12
2010-01-0096
This paper presents a methodology for designing a simple open-loop steering robot profile to simulate a double lane change maneuver for track testing of a heavy tractor/trailer combination vehicle. For track testing of vehicles in a lane change type of maneuver, a human driver is typically used with a desired path defined with visual cues such as traffic cones. Such tests have been shown to result in poor test repeatability due to natural variation in driver steering behavior. While a steering robot may be used to overcome this repeatability issue, such a robot typically implements open-loop maneuvers and cannot be guaranteed to cause the vehicle to accurately follow a pre-determined trajectory. This paper presents a method using offline simulation to design an open-loop steering maneuver resulting in a realistic approximation of a double lane change maneuver.
Technical Paper

Caterpillar Automatic Code Generation

2004-03-08
2004-01-0894
Automatic code generation from models is actively used at Caterpillar for powertrain and machine control development. This technology was needed to satisfy the industry's demands for both increased software feature content, and its added complexity, and a short turn-around time. A pilot development effort was employed initially to roll out this new technology and shape the deployment strategy. As a result of a series of successful projects involving rapid prototyping and production code generation, Caterpillar will deploy MathWorks modeling and code generation products as their department-wide production development capability. The data collected indicated a reduction of person hours by a factor of 2 to 4 depending on the project and a reduction of calendar time by a factor of greater than 2. This paper discusses the challenges, results, and lessons learned, during this pilot effort from the perspectives of both Caterpillar and The MathWorks.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Technical Paper

VoGe: A Voice and Gesture System for Interacting with Autonomous Cars

2017-03-28
2017-01-0068
In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
Technical Paper

Physical Metallurgy Applications and Enhanced Machinability of Microalloyed V-Ti-N Forging Steels

1998-02-23
980884
Medium-carbon, microalloyed forging steels represent a cost effective replacement of quenched and tempered grades. Their strength properties are derived from precipitation during cooling from the forging temperature. Because of the relatively high carbon content, vanadium is the most suitable addition to achieve precipitation strengthening. The effectiveness of vanadium is enhanced by the presence of nitrogen. For components subjected to impact loading, improvement in toughness is achieved by refining austenitic grains, pinning their boundaries by means of dispersed titanium nitrides. Precipitation strengthened ferrite-pearlite steels exhibit superior machinability compared to that of quenched and tempered alloy steels. As a result, the total machining costs are substantially reduced compared to the costs of machining heat-treated steels. The frequency of tool breakage and tool changes decrease dramatically, virtually eliminating line scrap and unnecessary downtime.
Technical Paper

Cylinder-to-Cylinder Variation of Losses in Intake Regions of IC Engines

1998-02-23
981025
Very large scale, 3D, viscous, turbulent flow simulations, involving 840,000 finite volume cells and the complete form of the time-averaged Navier-Stokes equations, were conducted to study the mechanisms responsible for total pressure losses in the entire intake system (inlet duct, plenum, ports, valves, and cylinder) of a straight-six diesel engine. A unique feature of this paper is the inclusion of physical mechanisms responsible for cylinder-to-cylinder variation of flows between different cylinders, namely, the end-cylinder (#1) and the middle cylinder (#3) that is in-line with the inlet duct. Present results are compared with cylinder #2 simulations documented in a recent paper by the Clemson group, Taylor, et al. (1997). A validated comprehensive computational methodology was used to generate grid independent and fully convergent results.
Technical Paper

Concurrent Product and Process Design for Caterpillar Inboard Axles

1992-09-01
921661
Caterpillar's inboard brake and final drive axle responds to customers needs for a lifetime service brake removed from the often hostile environment encountered by exposed shoe-drum or caliper-disc brakes. A multi-disciplined team was assembled to select the single most appropriate axle configuration. That team was composed of members of the three worldwide facilities which would manufacture the axles. After selection of the configuration, the team approach was continued from development thru production. Concurrent product and process design was felt to be the most efficient way to provide the customer with an enclosed brake and to modernize our plants manufacturing operations. This paper will identify the methods used to develop a cost effective manufacturable axle. Working the product design and manufacturing process together provided for a more manufacturable axle, in a shorter time frame, with less start-up problems compared to the traditional approach.
Technical Paper

Implementation of a Second Generation Sound Power Test for Production Testing of Earthmoving Equipment

1989-05-01
891144
IMPLEMENTATION OF A SECOND GENERATION SOUND POWER TEST FOR PRODUCTION TESTING OF EARTHMOVING EQUIPMENT Caterpillar has developed an automated sound power measurement system that measures construction equipment sound levels before they leave the assembly plant. This paper describes the test system and gives the results of verification tests conducted at various manufacturing plants around the world. It was concluded that the new system allows Caterpillar to quickly and accurately acquire the data necessary to assure that their product meets its noise requirements.
Technical Paper

The Caterpillar D9L Impact Ripper

1987-04-01
870779
Caterpillar has introduced a new concept that shatters previous ripping limitations. The D9L Impact Ripper has extended the ripping capacity and productivity of the standard ripper tractor in heavy construcion, mining, and quarry applications. This paper describes the design objectives, development program, component selection, and the demonstrated productivity of the D9L Impact Ripper.
Technical Paper

Challenger 65: A New Force in the Field

1987-09-01
871640
The Challenger 65 agricultural tractor combines the best features of current four wheel drive machines; speed, on-road mobility, and operator comfort with the well recognized advantages of track-type machines; tractive efficiency and reduced soil compaction.
X