Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the study is to investigate efficient computational aeroacoustics (CAA) simulation processes to assist the cooling-fan installation design. In this paper we report the current progress of the investigation, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Technical Paper

Soot Evolution in Multiple Injection Diesel Flames

2008-10-06
2008-01-2470
In order to meet future emission regulations, various new combustion concepts are being developed, several of which incorporate advanced diesel injection strategies, e.g. multiple injections, offering attractive potential benefits. In this study the effects of split injections on soot evolution in diesel flames were investigated in a series of flame experiments performed using a high pressure, high temperature (HP/HT) spray chamber and laser-induced incandescence apparatus to measure soot volume fractions. The focus was on split injections with varied dwell times preceded by a short pilot. The results, which were analyzed and compared to results from engine tests, show that net soot production can be decreased by applying an appropriate split injection strategy.
Technical Paper

The Role of Aerodynamics in the 1955 Le Mans Crash

2008-12-02
2008-01-2996
In the 1955 Le Mans race the worst crash in motor racing history occurred and this accident would change the face of motor racing for decades. After the crash numerous investigations on the disaster were performed, and fifty years after some interesting books were launched on the subject. However, a number of key questions remain unsolved; and one open area is the influence of aerodynamics on the scenario, since the Mercedes-Benz 300 SLR involved in the crash was equipped with an air-brake and its influence on the accident is basically unknown. This work may be considered as a first attempt to establish CFD as a tool to aid in resolving aerodynamic aspects in motor sport accidents and in the present paper, CFD has been used to investigate the aerodynamics and estimate the drag and lift coefficients of the Mercedes-Benz 300 SLR used in the Le Mans race of 1955.
Technical Paper

The Structure of Cavitation and its Effect on the Spray Pattern in a Single-Hole Diesel Nozzle

2001-05-07
2001-01-2008
The structure and evolution of cavitation in a transparent scaled-up diesel nozzle having a hole perpendicular to the nozzle axis has been investigated using high-speed motion pictures, flash photography and stroboscopic visualization. Observations revealed that, at the inception stage, cavitation bubbles are dominantly seen in the vortices at the boundary layer shear flow and outside the separation zone. Cavitation bubbles grow intensively in the shear layer and develop into cloud-like coherent structures when viewed from the side of the nozzle. Shedding of the coherent cloud cavitation was observed. When the flow was increased further the cloud like cavitation bubbles developed into a large-scale coherent structure extending downstream of the hole. Under this condition the cavitation starts as a mainly glassy sheet at the entrance of the hole. Until this stage the spray appeared to be symmetric.
Technical Paper

Prerequisites for Extensive Computer Manikin Analysis – An Example with Hierarchical Task Analysis, File Exchange Protocol and a Relational Database

2001-06-26
2001-01-2101
In this case study, a human factors engineering (HFE) analysis was carried out in the preliminary design phase of the Cupola. Cupola is a European Space Agency (ESA) module for manned space flights for the International Space Station (ISS) as part of a Barter Arrangement between ESA and the United States National Aeronautics and Space Administration (NASA). Manikin software was used early in the design process before the production of any flight hardware. The manikin analysis was supported by the use of hierarchical task analysis, a file exchange protocol and a relational database. This paper describes methodological aspects of the use of the supporting methods. Results show that hierarchical task analysis, a file exchange protocol and a relational database are prerequisites for successful extensive manikin analysis.
Technical Paper

Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without EGR

2002-03-04
2002-01-0239
SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions-releasing moderate amounts of heat-transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas-by low temperature chemistry-between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modeling of the end-gas reactions.
Technical Paper

Modelling of Gasoline and Ethanol Hollow-Cone Sprays Using OpenFOAM

2011-08-30
2011-01-1896
Over the past few years, an open-source code called OpenFOAM has been becoming a promising CFD tool for multi-dimensional numerical simulations of internal combustion engines. The primary goal of the present study is to assess the feasibility of the code for computations of hollow-cone sprays discharged by an outward-opening pintle-type injector by simulating the experiments performed recently by Hemdal et al., (SAE 2009-01-1496) with gasoline and ethanol sprays under the following conditions: air temperature Tair = 295 or 350 K, air pressure pair = 6 bar, fuel temperature Tfuel = 243, or 295, or 320 K, and fuel injection pressure pinj = 50, or 125, or 200 bar. To simulate the experiments, a pintle injector model and the physical properties of gasoline were implemented in OpenFOAM. The flow field calculated using the pintle injector model is more realistic than that yielded by the default unit injector model normally used in OpenFOAM.
Technical Paper

Investigation of Interior Noise from Generic Side- View Mirror Using Incompressible and Compressible Solvers of DES and LES

2018-04-03
2018-01-0735
Exterior turbulent flow is an important source of automobile cabin interior noise. The turbulent flow impacts the windows of the cabins to excite the structural vibration that emits the interior noise. Meanwhile, the exterior noise generated from the turbulent flow can also cause the window vibration and generate the interior noise. Side-view mirrors mounted upstream of the windows are one of the predominant body parts inducing the turbulent flow. In this paper, we investigate the interior noise caused by a generic side-view mirror. The interior noise propagates in a cuboid cavity with a rectangular glass window. The exterior flow and the exterior noise are computed using advanced CFD methods: compressible large eddy simulation, compressible detached eddy simulation (DES), incompressible DES, and incompressible DES coupled with an acoustic wave model. The last method is used to simulate the hydrodynamic and acoustic pressure separately.
Technical Paper

On the Use and Misuse of Statistical Energy Analysis for Vehicle Noise Control

1993-05-01
931301
The use of Statistical Energy Analysis (SEA) in the field of vehicle noise is discussed. Theoretical fundamentals and basic assumptions of the method are summarized. Examples of successful prediction of interior noise levels in vehicles using the “classical” formulation for SEA are reviewed. Recently methods have been presented for the in-situ experimental determination of coupling- and internal loss factors for vehicles, based on the power balance equations. The methods are a result of applying the SEA hypothesis to multi-subsystem models of complex structures. This approach is attractive for vibratory power flow models of very complex structures such as car bodies. Simple substructures or junctions can not easily be identified for such structures why models based on theoretical estimations for basic substructures or junctions become uncertain.
Technical Paper

Examination of Some Assumptions Practised in Vehicle Vibration Isolation Prediction and Design

1995-05-01
951272
Some common assumptions used in simplifying vehicle NVH prediction and design, in conjunction with isolators and mounts, are examined with the aim of offering qualitative improvements. It is often assumed that only the translational degrees of freedom are sufficient for a detailed structural analysis. Errors introduced by this simplification are quantified for some illustrative and simple examples concerning isolators, coupled analyses and transfer path analyses. It is suggested that a complete measurement procedure can alleviate the need for assuming beforehand that the rotational degrees of freedom are not essential. Once obtained they can be disregarded if demonstrated unnecessary.
Technical Paper

Variation of Vehicle NVH Properties due to Component Eigenfrequency Shifting - Basic Limits of Predictability

1995-05-01
951302
Many papers have been published on variation in noise and vibration as well as transfer function characteristics between individual vehicles with nominally identical design [1], [2] and [3]. However, prediction of Noise Vibration and Harshness (NVH) properties is mostly based on detailed, deterministic modelling with FE- and BE-methods. Time and computer resources for creation and experimental updating of these models need to be optimised with respect to achievable prediction accuracy, and in this context statistical, energy flow based methods (SEA, EFA etc.) should be considered as an efficient alternative for medium and high frequency NVH prediction. A basic study of variability for transfer function of multimodal systems, using ideal acoustic and structural components with parameters corresponding to vehicle body plates and cavities is performed. Well known theory on variability, originally developed for room acoustics, is demonstrated to apply also for simple plates.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
Technical Paper

Proactive Human Factors Engineering Analysis in Space Station Design Using the Computer Manikin Jack

2000-06-06
2000-01-2166
In this case study, a human factors analysis was carried out in the preliminary design phase of the Cupola, a European Space Agency (ESA) module for manned space flights for the International Space Station (ISS). The manikin software Jack® was used early in the design process before any flight hardware production. All Cupola astronaut tasks were evaluated in a virtual environment of the Cupola. Methodological aspects concerning the analysis are described, e.g. file processing, use of coordinate systems and the use of a prior task analysis. Results show that the thorough manikin analysis supported with the hierarchical task analysis results, was an important help in the design process.
Technical Paper

Modelling Gasoline Spray-wall Interaction -a Review of Current Models

2000-10-16
2000-01-2808
A literature survey was carried out to examine the advances in knowledge regarding spray impingement on surfaces over the last five years. Published experiments indicate that spray impingement is controlled by various spray parameters, surface conditions, and liquid properties. One disadvantage of the published results is that the experiments have mainly been conducted with water droplets or diesel fuel, often at atmospheric conditions. A sensitivity analysis was performed for one common impingement model. The purpose was to investigate how the model described different phenomena when different parameters were changed, including wall temperature, wall roughness and injection velocity of the spray. The model tested showed sensitivity to surface roughness, whereas changes in wall temperature only resulted in increased evaporation from the surface. The increase of injection velocity resulted in a decrease of fuel on the wall by 70%.
Technical Paper

Analysis of Brake Judder by use of Amplitude Functions

1999-05-17
1999-01-1779
Brake judder is a forced vibration occurring in different types of vehicles. The frequency of the vibration can be as high as 500 Hz, but usually remains below 100 Hz and often as low as 10-20 Hz. The driver experiences judder as vibrations in the steering wheel, brake pedal and floor. For high frequency brake judder, the structural vibrations are accompanied by a sound. In the present paper the vibration amplitude (in terms of angular deflection, velocity or acceleration) of the caliper has been used as a quantitative measure of the vibration level. Brake Torque Variation (BTV) is the primary excitation for the vibrations. The mechanical effects generating BTV are linked not only to manufacturing tolerances but also to tribological issues. Uneven disc wear as well as Thermo-Elastic Instabilities (TEI) can lead to judder. Especially the effect of the wheel suspension on the transfer of the vibrations to the driver has to be considered.
Technical Paper

Investigation of Spark Position Effects in a Small Pre-chamber on Ignition and Early Flame Propagation

2000-10-16
2000-01-2839
Lean gas engines have a potential for a significant reduction in both fuel consumption and emission levels. The use of a small pre-chamber with controlled stoichiometric or rich mixture composition is an effective way to deal with ignition problems in such engines. A constant volume vessel equipped with a device for generation of turbulence of known quantities is used to study the operation of a cylindrical pre-chamber of 1% of the main chamber volume. Pressure was measured in the main chamber and Schlieren images of the flame initiation and propagation in the main chamber were recorded for all set-ups. The investigation of the pre-chamber is focused on the position of the spark within the pre-chamber. Spark locations close to the orifice and close to the opposite wall as well as in the middle of the pre-chamber were tested and flame evolution and pressure history were studied.
Technical Paper

Human Response to Vibrations and Its Contribution to the Overall Ride Comfort in Automotive Vehicles - A Literature Review

2020-04-14
2020-01-1085
The various factors that affect ride comfort, including noise, vibrations and harshness (NVH) have been in focus in many research studies due to an increasing demand in ride comfort in the automotive industry. Vibrations have been highlighted as an important contribution to assess and predict overall ride comfort. The purpose of this paper is to present an approach to explain ride comfort with respect to vibration for the seated occupant based on a systematic literature review of previous fundamental research and to relate these results to the application in the contemporary automotive industry. The results from the literature study show that numerous research studies have determined how vibration frequency, magnitude, direction, duration affect human response to vibration. Also, the studies have highlighted how body posture, age, gender and anthropometry affect the human perception of comfort.
X