Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

An Enhanced Input Uncertainty Representation Method for Response Surface Models in Automotive Weight Reduction Applications

2015-04-14
2015-01-0423
Vehicle weight reduction has become one of the viable solutions to ever-growing energy and environmental crisis. In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affects the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. For the purpose of constructing and correcting the bias in RSMs, scheduling Design of Experiments (DOEs) must be conducted properly. This paper develops a method to arrange DOEs in order to build RSMs with high quality, considering the influence of input uncertainty.
Journal Article

Research on Validation Metrics for Multiple Dynamic Response Comparison under Uncertainty

2015-04-14
2015-01-0443
Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
Journal Article

Development of a Comprehensive Validation Method for Dynamic Systems and Its Application on Vehicle Design

2015-04-14
2015-01-0452
Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
Technical Paper

A Dynamic Trajectory Planning for Automatic Vehicles Based on Improved Discrete Optimization Method

2020-04-14
2020-01-0120
The dynamic trajectory planning problem for automatic vehicles in complex traffic scenarios is investigated in this paper. A hierarchical motion planning framework is developed to complete the complex planning task. An improved dangerous potential field in the curvilinear coordinate system is constructed to describe the collision risk of automatic vehicles accurately instead of the discrete Gaussian convolution algorithm. At the same time, the driving comfort is also considered in order to generate an optimal, smooth, collision-free and feasible path in dynamics. The optimal path can be mapped into the Cartesian coordinate system simply and conveniently. Furthermore, a velocity profile considering practical vehicle dynamics is also presented to improve the safety and the comfort in driving. The effectiveness of the proposed dynamic trajectory planning is verified by numerical simulation for several typical traffic scenarios.
Technical Paper

Effect Analysis for the Uncertain Parameters on Self-Piercing Riveting Simulation Model Using Machine Learning Model

2020-04-14
2020-01-0219
Self-piercing rivets (SPR) are efficient and economical joining methods used in the manufacturing of lightweight automotive bodies. The finite element method (FEM) is a potentially effective way to assess the joining process of SPRs. However, uncertain parameters could lead to significant mismatches between the FEM predictions and physical tests. Thus, a sensitivity study on critical model parameters is important to guide the high-fidelity modeling of the SPR insertion process. In this paper, an axisymmetric FEM model is constructed to simulate the insertion process of the SPR using LS-DYNA/explicit. Then, several surrogate models are evaluated and trained using machine learning methods to represent the relations between selected inputs (e.g., material properties, interfacial frictions, and clamping force) and outputs (cross-section dimensions).
Technical Paper

A Study of Driver's Driving Concentration Based on Computer Vision Technology

2020-04-14
2020-01-0572
Driving safety is an eternal theme of the transportation industry. In recent years, with the rapid growth of car ownership, traffic accidents have become more frequent, and the harm it brings to human society has become increasingly serious. In this context, car safety assisted driving technology has received widespread attention. As an effective means to reduce traffic accidents and reduce accident losses, it has become the research frontier in the field of traffic engineering and represents the trend of future vehicle development. However, there are still many technical problems that need to be solved. With the continuous development of computer vision technology, face detection technology has become more and more mature, and applications have become more and more extensive. This article will use the face detection technology to detect the driver's face, and then analyze the changes in driver's driving focus.
Technical Paper

A Trajectory Planning and Fuzzy Control for Autonomous Intelligent Parking System

2017-03-28
2017-01-0032
This paper proposed a two-section trajectory planning algorithm. In this trajectory planning, sigmoid function is adopted to fit two tangent arcs to meet limited parking spaces by reducing the radius of turning. Then the transverse preview model is established and the path tracking errors including distance error and angle error are estimated. The weight coefficient is considered to distribute the impact factor of traverse distance error or traverse angle error in the total error. The fuzzy controller is designed to track the two-section trajectory in autonomous intelligent parking system. The fuzzy controller is developed due to its real-time and robustness in the parking process. Traverse errors and its first-order derivative are selected as input variables and the outer wheel steering angle is selected as the output variable in fuzzy controller. They are also divided into seven fuzzy sets. Finally, forty rules are decided to achieve effective trajectory tracking.
Technical Paper

Design Optimization of Vehicle Body NVH Performance Based on Dynamic Response Analysis

2017-03-28
2017-01-0440
Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
Technical Paper

Hierarchical Vehicle Active Collision Avoidance Based on Potential Field Method

2021-12-14
2021-01-7038
In this paper, a closed loop path planning and tracking control approach of collision avoidance for autonomous vehicle is proposed. The two-level model predictive control (MPC) is proposed for the path planning and tracking. The upper-level MPC is designed based on the simple vehicle kinematic model to calculate the collision-free trajectory and the potential field method is adopted to evaluate the collision risk and generate the cost function of the optimization problem. The lower-level MPC is the trajectory-tracking controller based on the vehicle dynamics model that calculates the desired control inputs. Finally the control inputs are distributed to steering wheel angle and motor torque via optimal control vectoring algorithm. Test cases are established on the Simulink/CarSim platform to evaluate the performance of the controller.
Technical Paper

Crack Detection and Section Quality Optimization of Self-Piercing Riveting

2023-04-11
2023-01-0938
The use of lightweight materials is one of the important means to reduce the quality of the vehicle, which involves the connection of dissimilar materials, such as the combination of lightweight materials and traditional steel materials. The riveting quality of self-piercing riveting (SPR) technology will directly affect the safety and durability of automobiles. Therefore, in the initial joint development process, the quality of self-piercing riveting should be inspected and classified to meet safety standards. Based on this, this paper divides the self-piercing riveting quality into riveting appearance quality and riveting section quality. Aiming at the appearance quality of riveting, the generation of cracks on the lower surface of riveting will seriously affect the riveting strength. The existing method of identifying cracks on the lower surface of riveting based on artificial vision has strong subjectivity, low efficiency and cannot be applied on a large scale.
Technical Paper

An Integrated Deformed Surfaces Comparison Based Validation Framework for Simplified Vehicular CAE Models

2018-04-03
2018-01-1380
Significant progress in modeling techniques has greatly enhanced the application of computer simulations in vehicle safety. However, the fine-meshed impact models are usually complex and take lots of computational resources and time to conduct design optimization. Hence, to develop effective methods to simplify the impact models without losing necessary accuracy is of significant meaning in vehicle crashworthiness analysis. Surface deformation is frequently regarded as a critical factor to be measured for validating the accuracy of CAE models. This paper proposes an integrated validation framework to evaluate the inconsistencies between the deformed surfaces of the original model and simplified model. The geometric features and curvature information of the deformed surfaces are firstly obtained from crash simulation. Then, the magnitude and shape discrepancy information are integrated into the validation framework as the surface comparison objects.
Technical Paper

Driver Identification Using Multivariate In-vehicle Time Series Data

2018-04-03
2018-01-1198
All drivers come with a driving signature during a driving. By aggregating adequate driving data of a driver via multiple driving sessions, which is already embedded with driving behaviors of a driver, driver identification task could be treated as a supervised machine learning classification problem. In this paper, we use a random forest classifier to implement the classification task. Therefore, we collected many time series signals from 60 driving sessions (4 sessions per driver and 15 drivers totally) via the Controller Area Network. To reduce the redundancy of information, we proposed a method for signal pre-selection. Besides, we proposed a strategy for parameters tuning, which includes signal refinement, interval feature extraction and selection, and the segmentation of a signal. We also explored the performance of different types of arrangement of features and samples.
Technical Paper

Study on the Controlled Field Test Scenarios of Automated Vehicles

2018-08-07
2018-01-1633
Function and performance test of automated vehicles in the closed field is a necessary way to verify their safety, intelligence and comfort. The design and number of test scenarios will influence if the automated vehicles can be tested and evaluated effectively and fast. Based on the interrelationship among the vehicle, driver’s (or control system) driving strategy and road, we use the permutation and combination method to compare the relative position and movement relations between an automated vehicle (vehicle under test) and the surrounding vehicles to generate a total possible test scenarios group.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
Technical Paper

Data Mining Based Feasible Domain Recognition for Automotive Structural Optimization

2016-04-05
2016-01-0268
Computer modeling and simulation have significantly facilitated the efficiency of product design and development in modern engineering, especially in the automotive industry. For the design and optimization of car models, optimization algorithms usually work better if the initial searching points are within or close to a feasible domain. Therefore, finding a feasible design domain in advance is beneficial. A data mining technique, Iterative Dichotomizer 3 (ID3), is exploited in this paper to identify sets of reduced feasible design domains from the original design space. Within the reduced feasible domains, optimal designs can be efficiently obtained while releasing computational burden in iterations. A mathematical example is used to illustrate the proposed method. Then an industrial application about automotive structural optimization is employed to demonstrate the proposed methodology. The results show the proposed method’s potential in practical engineering.
Technical Paper

Bayesian Classifier Based Validation Method for Multivariate Systems

2016-04-05
2016-01-0284
Simulation models based design has become the common practice in automotive product development. Before applying these models in practice, model validation needs to be conducted to assess the validity of the models by comparing model predictions with experimental observations. In the validation process, it is vital to develop appropriate validation metrics for intended applications. When dealing with multivariate systems, comparisons between model predictions and test data with multiple responses would lead to conflicting decisions. To address this issue, this paper proposed a Bayesian classifier based validation method. With the consideration of both error rate and confidence in hypothesis testing, Bayesian classifier is developed for decision making. The process of validation is implemented on a real-world vehicle design case. The results show the proposed method’s potential in practical application.
Technical Paper

Numerical Study of Intake Manifold Water Injection on Characteristics of Combustion and Emissions in a Heavy-Duty Natural Gas Engine

2019-04-02
2019-01-0562
The performances of heavy-duty natural gas engines have been limited by combustion temperature and NOx emissions for a long time. Recently, water injection technology has been widely considered as a technical solution in reducing fuel consumption and emissions simultaneously in both gasoline and diesel engines. This paper focuses on the impacts of intake manifold water injection on characteristics of combustion and emissions in a natural gas heavy-duty engine through numerical methods. A computational model was setup and validated with experimental data of pressure traces in a CFD software coupled with detailed chemical kinetics. The simulation was mainly carried out in low-speed and full-load conditions, and knock level was also measured and calculated by maximum amplitude of pressure oscillations (MAPO).
Technical Paper

The Evaluation of the Driving Capability for Drivers Based on Vehicle States and Fuzzy-ANP Model

2022-01-31
2022-01-7000
In partly autonomous driving such as level 2 or level 3 automatic driving from SAE international classification, the switching of the driving right between the human driver and the machine plays an important role in the driving process of vehicle [1]. In this paper, the data collected from vehicle states and the driving behavior of drivers is completed via a simulator and self-report questionnaires. A fuzzy analytic network process (Fuzzy-ANP) model is developed to evaluate the driving capability of the drivers in real time from vehicle states due to its direct inherent link to the change of the driving state of drivers Moreover, in this model, the idea of group decision and multi-index fusion is adopted. The questionnaire is required to identify the experimental results from the simulator. The results show that the proposed Fuzzy-ANP model can evaluate the driving capability of the participants in real time accurately.
Journal Article

An Integrated Validation Method for Nonlinear Multiple Curve Comparisons

2016-04-05
2016-01-0288
In automobile industry, computational models built to predict the performances of the prototype vehicles are on the rise. To assess the validity or predictive capability of the model for its intended usage, validation activities are conducted to compare computational model outputs with test measurements. Validation becomes difficult when dealing with dynamic systems which often involve multiple functional responses, and the complex characteristics need to be appropriately considered. Many promising data analysis tools and metrics were previously developed to handle data correlation and evaluate the errors in magnitude, phase shift, and shape. However, these methods show their limitations when dealing with nonlinear multivariate dynamic systems. In this paper, kernel function based projection is employed to transform the nonlinear data into linear space, followed by the regular principal component analysis (PCA) based data processing.
Journal Article

A New Safety-Oriented Multi-State Joint Estimation Framework for High-Power Electric Flying Car Batteries

2023-04-11
2023-01-0511
Accurate and robust knowledge of battery internal states and parameters is a prerequisite for the safe, efficient, and reliable operation of electric flying cars. Battery states such as state of charge (SOC), state of temperature (SOT), and state of power (SOP) are of particular interest for urban air mobility (UAM) applications. This article proposes a new safety-oriented multi-state estimation framework for collaboratively updating the SOC, SOT, and SOP of lithium-ion batteries under typical UAM mission profiles that explicitly incorporates the underlying interplay among these three states. Specifically, the SOC estimation is performed by combining an adaptive extended Kalman filter with a timely calibrated battery electrical model, and the key temperature information, including the volume-averaged temperature, highest temperature, and maximum temperature difference, is estimated using an adaptive Kalman filter based on a simplified 2-D spatially-resolved thermal model.
X