Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Urea Deposit Predictions on a Practical Mid/Heavy Duty Vehicle After-Treatment System

2018-04-03
2018-01-0960
Urea/SCR systems have been proven effective at reducing NOx over a wide range of operating conditions on mid/heavy duty diesel vehicles. However, design changes due to reduction in the size of modern compact Urea/SCR systems and lower exhaust temperature have increased the possibility of urea deposit formation. Urea deposits are formed when urea in films and droplets undergoes undesirable secondary reactions and generate by-products such as ammelide, biuret and cyanuric Acid (CYA). Ammelide and CYA are difficult to decompose which lead to the formation of solid deposits on the surface. This phenomenon degrades the performance of the after treatment system by decreasing overall mixing efficiency, lowering de-NOx efficiency and increasing pressure drop. Therefore, mitigating urea deposits is a primary design goal of modern diesel after-treatment systems.
Technical Paper

Accelerating Accurate Urea/SCR Film Temperature Simulations to Time-Scales Needed for Urea Deposit Predictions

2019-04-02
2019-01-0982
Urea water solution-based Selective Catalytic Reduction (SCR) of NOx emissions from vehicular diesel engines is now widely used world-wide to meet strict health and environmental protection regulations. While urea-based SCR is proven effective, urea-derived deposits often form near injectors, on mixers and pipes, and on the SCR catalyst face. Further understanding of these deposit-formation processes is needed to design aftertreatment system hardware and control systems capable of avoiding severe urea-derived deposits. Computational Fluid Dynamics (CFD) is widely used in SCR aftertreatment design. Film formation, movement, solid wall cooling and deposit initiation/growth time-scales are in the range of minutes to hours, but traditional CFD simulations take too long to reach these time-scales. Here, we propose and demonstrate the frozen flow approach for pulsed sprays and conjugate heat transfer to reduce computation time while maintaining accuracy of key physics.
Technical Paper

Towards Quantitative Prediction of Urea Thermo-Hydrolysis and Deposits Formation in Exhaust Selective Catalytic Reduction (SCR) Systems

2019-04-02
2019-01-0992
In order to assist in fast design cycle of Diesel engines selective catalytic reduction (SCR) exhaust systems, significant endeavor is currently being made to improve numerical simulation accuracy of urea thermo-hydrolysis. In this article, the achievements of a recently developed urea semi-detailed decomposition chemical scheme are assessed using three available databases from the literature. First, evaporation and thermo-hydrolysis of urea-water solution (UWS) single-droplets hanged on a thin thermocouple ring (127 μm) as well as on a thick quartz (275 μm), have been simulated at ambient temperature conditions ranging from 473K to 773K. It has been shown that the numerical results, in terms of evaporation rate and urea gasification, as well as droplet temperature history are very close to the experiments if the heat flux coming from the droplet support is properly accounted for.
Technical Paper

Cause and Effect of Reversible Deactivation of Diesel Oxidation Catalysts

2014-04-01
2014-01-1518
To meet TierII/LEVII emissions standards, light duty diesel (LDD) vehicles require high conversion efficiencies from the Aftertreatment Systems (ATS) for the removal of both Hydrocarbon (HC) and Nitrogen Oxide (NOx) species. The most populous configuration for LDD ATS have the Selective Catalytic Reduction (SCR) catalyst positioned on the vehicle behind the close coupled Diesel Oxidation Catalyst (DOC) and Catalyzed Diesel Particulate Filter (CDPF). This SCR position may require active heating measures which rely on the DOC/CDPF to provide heat through the combustion of HC and CO in the exhaust. Although DOCs are always impacted by their aging conditions, some aging conditions are shown to be both reversible and irreversible.
Technical Paper

Predictions of Urea Deposit Formation with CFD Using Autonomous Meshing and Detailed Urea Decomposition

2021-04-06
2021-01-0590
Urea-water solution (UWS) injection combined with Selective Catalytic Reduction (SCR) has developed as an effective method of meeting EPA and EURO NOx emissions regulations for diesel engines. Urea/SCR systems encompass a wide range of engine sizes, from light duty vehicles to large ship or power generation engines. One key challenge faced by modern urea/SCR systems is the formation of solid deposits of urea decomposition by-products that are difficult to remove. These deposits are proven to be detrimental to urea/SCR systems by decreasing ammonia uniformity, clogging injector nozzles and increasing pressure drop of the whole system. Urea deposits only form in a narrow range of wall temperatures and take many minutes to hours to form. The decomposition of urea into deposits begins with the formation of biuret and then progresses into the crystalline species cyanuric acid (CYA), ammelide, and ammeline.
Technical Paper

Numerical Modeling of Liquid Film Boiling, Urea Deposition and Solidification in SCR Applications

2024-04-09
2024-01-2626
The proposed Euro 7 regulation aims to substantially reduce the NOx emissions to 0.03 g/km, a trend also seen in upcoming China 6b and US EPA regulations. Meeting these stringent requirements necessitates advancements in Urea/Selective Catalytic Reduction (SCR) aftertreatment systems, with the urea deposit formation being a key challenge to its design. It’s proven that Computational Fluid Dynamics (CFD) can be an effective tool to predict Urea deposits. Transient wall temperature prediction is crucial in Urea deposit modeling. Additionally, fully understanding the kinetics of urea decomposition and by-products solidification are also critical in predicting the deposit amount and its location. In this study, we introduce (i) a novel film boiling model (IFPEN-BRT model) and (ii) a new urea by-product solidification model in the CONVERGE CFD commercial solver, and validate the results against the recent experiments.
X