Refine Your Search

Topic

Author

Search Results

Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Technical Paper

A Finite Element Design Study and Performance Evaluation of an Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Vehicle Door Assembly

2020-04-14
2020-01-0203
The ever-growing concern to reduce the impact of transportation systems on environment has pushed automotive industry towards fuel-efficient and sustainable solutions. While several approaches have been used to improve fuel efficiency, the light-weighting of automobile components has proven broadly effective. A substantial effort is devoted to lightweighting body-in-white which contributes ~35% of total weight of vehicle. Closure systems, however, have been often overlooked. Closure systems are extremely important as they account for ~ 50% of structural mass and have a very diverse range of requirements, including crash safety, durability, strength, fit, finish, NVH, and weather sealing. To this end, a carbon fiber-reinforced thermoplastic composite door is being designed for an OEM’s mid-size SUV, that enables 42.5% weight reduction. In this work, several novel composite door assembly designs were developed by using an integrated design, analysis and optimization approach.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Technical Paper

A Modified Monte-Carlo Approach to Simulation-Based Vehicle Parameter Design with Multiple Performance Objectives and Multiple Scenarios

2002-03-04
2002-01-1186
Shorter development times in the automotive industry are leading to the increased use of computer simulation in the vehicle design cycle to pre-optimize vehicle concepts. The focus of the work presented in this study is vehicle dynamic performance in different driving maneuvers. More specifically this paper presents a methodology for simulation-based parameter design of vehicles for excellent performance in multiple maneuvers. The model used in the study consists of eight degrees-of-freedom and has been validated previously. The vehicle data used is for a commercially available vehicle. A number of different driving scenarios (maneuvers) based on ISO standards for transient dynamic behavior are implemented and performance indices are calculated for each individual maneuver considered. Vehicle performance is assessed based on the performance indices.
Technical Paper

Optimization of a Military Ground Vehicle Engine Cooling System Heat Exchanger - Modeling and Size Scaling

2017-03-28
2017-01-0259
Heat rejection in ground vehicle propulsion systems remains a challenge given variations in powertrain configurations, driving cycles, and ambient conditions as well as space constraints and available power budgets. An optimization strategy is proposed for engine radiator geometry size scaling to minimize the cooling system power consumption while satisfying both the heat removal rate requirement and the radiator dimension size limitation. A finite difference method (FDM) based on a heat exchanger model is introduced and utilized in the optimization design. The optimization technique searches for the best radiator core dimension solution over the design space, subject to different constraints. To validate the proposed heat exchanger model and optimization algorithm, a heavy duty military truck engine cooling system is investigated.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Technical Paper

Optimization to Improve Lateral Stability of Tractor Semi-Trailers During Steady State Cornering

2004-10-26
2004-01-2690
Decreasing the propensity for rollover during steady state cornering of tractor semi-trailers is a key advantage to the trucking industry. This will be referred to as “increasing the lateral stability during steady state cornering” and may be accomplished by changes in design and loading variables which influence the behavior of a vehicle. To better understand the effects of such changes, a computer program was written to optimize certain design variables and thus maximize the lateral acceleration where an incipient loss of lateral stability occurs. The vehicle model used in the present investigation extends that developed by Law [1] and presented in Law and Janajreh [2]. The original model included the effects of tire flexibility, nonlinear roll-compliant suspensions, and fifth wheel lash. This model was modified to include (a) additional effects of displacement due to both lateral and vertical tire flexibility, and (b) provisions for determining “off-tracking”.
Technical Paper

A Smart Jersey Highway Barrier with Portal for Small Animal Passage and Driver Alert

2013-04-08
2013-01-0620
Barriers are commonly used on roadways to separate and to protect against vehicles traveling in opposing directions from possible head-on collisions. However, these barriers may interfere with wildlife passage such that animals become trapped on the road. Typically, small animals cannot find safe passage across all traffic lanes due to the presence of solid barriers and eventually die after being hit by a vehicle. The occurrence of animal-to-vehicle collisions also presents a dangerous scenario for motorists as a driver may intuitively swerve to avoid hitting the animal. In this paper, a redesigned Jersey style barrier, named the Clemson smart portal, will be presented and discussed. This roadway barrier features a portal for small animal travel, along with a mechatronic-based warning system to notify drivers of animal passage.
Technical Paper

Criticality Assessment of Simulation-Based AV/ADAS Test Scenarios

2022-03-29
2022-01-0070
Testing any new safety technology of Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) requires simulation-based validation and verification. The specific scenarios used for testing, outline incidences of accidents or near-miss events. In order to simulate these scenarios, specific values for all the above parameters are required including the ego vehicle model. The ‘criticality’ of a scenario is defined in terms of the difficulty level of the safety maneuver. A scenario could be over-critical, critical, or under-critical. In over-critical scenarios, it is impossible to avoid a crash whereas, for under-critical scenarios, no action may be required to avoid a crash. The criticality of the scenario depends on various parameters e.g. speeds, distances, road/tire parameters, etc. In this paper, we propose a definition of criticality metric and identify the parameters such that a scenario becomes critical.
Journal Article

Designing the Design Space: Evaluating Best Practices in Tradespace Exploration, Analysis and Decision-Making

2022-03-29
2022-01-0354
Determining the validity of the design space early in the conceptualization of a project can make the difference between project success and failure. Early assessment of technical feasibility, project risk, technical readiness and realistic performance expectations based on models with different levels of fidelity, uncertainty, and technical robustness is a challenging mission critical task for large procurement projects. Tradespace exploration uses model-based engineering analysis, design exploration methods, and multi-objective optimization techniques to enable project stakeholders to make informed decisions and tradeoffs concerning the scope, schedule, budget, performance and risk profile of a project. As the intersection with a number of project stakeholders, tradespace studies can provide a significant impact upon the direction and decision-making in a project.
Technical Paper

A Prognostic Based Control Framework for Hybrid Electric Vehicles

2022-03-29
2022-01-0352
Electrified transportation has received significant interest recently because of sustainable and clean energy goals. However, the degradation of electrical components such as energy storage systems raises system reliability and economic concerns. In this paper, a prognostic-based control strategy is proposed for hybrid electric vehicles (HEVs) to abate the degradation of energy systems. Degradation forecasting models of electrical components are developed to predict their degradation paths. The predicted results are then used to control HEVs in order to reduce the degradation of components.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Technical Paper

Selection of Surrogate Models with Metafeatures

2022-03-29
2022-01-0365
Modeling and simulation of ground vehicles can be a computationally expensive problem due to the complexity of high-fidelity vehicle models. Often to determine mobility metrics, multiple stochastic simulations need to be evaluated. Surrogate models, or models of models, offer a means to reduce the computational cost of these simulation efforts. Since various types of surrogate models are available to the user, choosing the best surrogate model for a simulation is mostly the challenging process. In this paper, the process of selecting surrogate models and its uses based on model metafeatures is presented. The approach formulates this decision as a trade-off among three main drivers, required dataset size (how much information is necessary to compute the surrogate model), surrogate model accuracy (how accurate the surrogate model must be) and total computational time (how much time is required for the surrogate modeling process).
Technical Paper

A First Look at Android Automotive Privacy

2023-04-11
2023-01-0037
Android Automotive OS (AAOS) has been gaining popularity in recent years, with several OEMs across the world already deploying it or planning to in the near future. Besides the benefit of a well-known, customizable and secure operating system for OEMs, AAOS allows third-party app developers to offer their apps on vehicles of several manufacturers at the same time. Currently, there are 55 apps for AAOS that can be categorized as media, navigation or point-of-interest apps. Specifically the latter two categories allow the third-parties to collect certain sensor data directly from the vehicle. Furthermore, the latest version of AAOS also allows the OEM to configure and collect In-Vehicle Infotainment (IVI) and vehicle data (called OEM telemetry). However, increasing connectivity and integration with the in-vehicle network comes at the expense of user privacy. Previous works have shown that vehicular sensor data often contains personally identifiable information (PII).
Technical Paper

An Exergy-Based Methodology for Decision-Based Design of Integrated Aircraft Thermal Systems

2000-10-10
2000-01-5527
This paper details the concept of using an exergy-based method as a thermal design methodology tool for integrated aircraft thermal systems. An exergy-based approach was applied to the design of an environmental control system (ECS) of an advanced aircraft. Concurrently, a traditional energy-based approach was applied to the same system. Simplified analytical models of the ECS were developed for each method and compared to determine the validity of using the exergy approach to facilitate the design process in optimizing the overall system for a minimum gross takeoff weight (GTW). The study identified some roadblocks to assessing the value of using an exergy-based approach. Energy and exergy methods seek answers to somewhat different questions making direct comparisons awkward. Also, high entropy generating devices can dominate the design objective of the exergy approach.
Technical Paper

Pointing Gesture Based Point of Interest Identification in Vehicle Surroundings

2018-04-03
2018-01-1094
This article presents a pointing gesture-based point of interest computation method via pointing rays’ intersections for situated awareness interactions in vehicles. The proposed approach is compared with two alternative methods: (a) a point of interest identification method based on the intersection of the pointing ray with the point cloud (PoC) resulting from the vehicle sensors, and (b) the traditional ray-casting approach, where the point of interest is computed based on the first intersection of the pointing rays with locations stored in a 2D annotated map. Simulation results show that the presented method outperforms by 36.25% the traditional ray casting one. However, as it was expected, the sensor-based computation method is more accurate. The validation of our approach was conducted by experiments performed in a test track facility.
Technical Paper

Quantification of Linear Approximation Error for Model Predictive Control of Spark-Ignited Turbocharged Engines

2019-09-09
2019-24-0014
Modern turbocharged spark-ignition engines are being equipped with an increasing number of control actuators to meet fuel economy, emissions, and performance targets. The response time variations between engine control actuators tend to be significant during transients and necessitate highly complex actuator scheduling routines. Model Predictive Control (MPC) has the potential to significantly reduce control calibration effort as compared to the current methodologies that are based on decentralized feedback control strategies. MPC strategies simultaneously generate all actuator responses by using a combination of current engine conditions and optimization of a control-oriented plant model. To achieve real-time control, the engine model and optimization processes must be computationally efficient without sacrificing effectiveness. Most MPC systems intended for real-time control utilize a linearized model that can be quickly evaluated using a sub-optimal optimization methodology.
Technical Paper

Multi-Objective Design Optimization of an Electric Motor Thermal Management System for Autonomous Vehicles

2021-04-06
2021-01-0257
The integration of electric motors into ground vehicle propulsion systems requires the effective removal of heat from the motor shell. As the torque demand varies based on operating cycles, the generated heat from the motor windings and stator slots must be rejected to the surroundings to ensure electric machine reliability. In this paper, an electric motor cooling system design will be optimized for a light duty autonomous vehicle. The design variables include the motor cradle volume, the number of heat pipes, the coolant reservoir dimensions, and the heat exchanger size while the cost function represents the system weight, overall size, and performance. The imposed requirements include the required heat transfer per operating cycle (6, 9, 12kW) and vehicle size, component durability requirement, and material selection. The application of a nonlinear optimization package enabled the cooling system design to be optimized.
Technical Paper

Nondestructive Evaluation of Terrain Using mmWave Radar Imaging

2021-04-06
2021-01-0254
Military ground vehicles operate in off-road environments traversing different terrains under various environmental conditions. There has been an increasing interest towards autonomous off-road vehicle navigation, leading to the needs of terrain traversability assessment through sensing. These methods utilized data-driven approaches on classical robotic perception sensing modalities (RGB cameras, Lidar, and depth cameras) positioned in front of ground vehicles in order to observe approaching terrain. Classical robotic sensing modalities, though effective for describing environment geometry and object detection and tracking, aren’t able to directly observe features related to compaction and moisture content which have significant effects on the moduli properties governing terrain mechanics. These methods then become very specialized to specific regions and environmental conditions which are inevitably subject to change.
X