Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Development of Trivalent Chromium Passivation for Zn Platng with High Corrosion Resistance after Heating

2016-04-05
2016-01-0542
Trivalent chromium passivation is used after zinc plating for enhancing corrosion resistance of parts. In the passivating process, the amount of dissolved metal ions (for example zinc and iron) in the passivation solution increases the longer the solution is used. This results in a reduced corrosion resistance at elevated temperatures. Adding a top coat after this process improves the corrosion resistance but has an increased cost. To combat this, we strove to clarify the mechanism of decreased corrosion resistance and to develop a trivalent chromium passivation with a higher corrosion resistance at elevated temperatures. At first, we found that in parts produced from an older solution, the passivation layer has cracks which are not seen in parts from a fresh/new solution. These cracks grow when heated at temperatures over 120 degrees Celsius.
Journal Article

Capacitive Humidity Sensors Using Highly Durable Polyimide Membrane

2013-04-08
2013-01-1337
Humidity sensors used in automatic windshield defogging controls contribute to the improvement of fuel consumption. The optimum control of air conditioning systems can be realized by adding humidity information to conventional systems which have used only temperature information. While resistive humidity sensors have been widely used, their sensing range and responsiveness are observed as issues. Resistive sensors cannot function at a humidity range of around 100% RH as well as at a low temperature range, and have a low response rate to sudden changes in humidity. It is considered that resistive humidity sensors will be replaced with capacitive ones which have a wide sensing range and high responsiveness.
Technical Paper

Development of Sintered Bearing Material with Higher Corrosion Resistance for Fuel Pumps

2007-04-16
2007-01-0415
In recent years, due to a growing demand for improvement in the performance and reliability of automotive fuel pumps and the advancement of globalization, automotive fuel pumps are being used with inferior gasolines that include more sulfur, organic acids or compounds, compared to gasolines used in general regions. Conventionally, bearings in these fuel pumps have mainly been made of sintered bronze alloy. With this bronze alloy, however, it is difficult to achieve a significant improvement in the tribology characteristics of bearings, in order to meet the demands for performance improvement, etc., and corrosion is severe in inferior gasolines that contain highly-concentrated organic acids or sulfur and the corrosion products that accompany them. Therefore, in order to obtain fine tribology characteristics and superior corrosion resistance in gasolines with highly-concentrated organic acids and sulfur, various copper-based alloys were studied using the powder metallurgy process.
Technical Paper

Reliability Analysis of Adhesive for PBT-Epoxy Interface

2007-04-16
2007-01-1517
PBT (polybutylene terephthalate) and epoxy adhesive, which both have superior heat resistance and environmental resistance, are a representative combination now being applied to many parts. Generally, PBT is annealed after molding at a temperature above the glass transition temperature to ensure dimensional stability when in use. But in this case, this process decreases the adhesive strength between PBT and epoxy. This study analyzes the adhesion degradation mechanism in this system and a countermeasure technology is proposed. Regarding this PBT-epoxy adhesion degradation mechanism, focus is placed on changes in the fracture surface, which is analyzed before and after annealing. From this analysis it becomes clear that generation of a WBL (weak boundary layer) is caused by non-crystallization and a migration of the PBT functional group on the adhesion surface layer.
Technical Paper

Development of a New MOS Rectifier for High-Efficiency Alternators

2017-03-28
2017-01-1240
For the purpose of improving vehicle fuel efficiency, it is necessary to reduce energy loss in the alternator. We have lowered the resistance of the rectifying device and connecting components, and control the rectifying device with an IC to reduce rectification loss. For the package design, we have changed the structure of the part on which the rectifying device is mounted into a high heat dissipation type. The new structure has enabled optimizing the size of the rectifying device, resulting in the reduction of size of the package. In addition, the rectifying device is mounted using a new soldering material and a new process, which has improved the reliability of the connection. Moreover, since the alternator has introduced a new system, the controller IC has a function for preventing malfunction of the rectifying device and a function for detecting abnormalities, in order to ensure safety.
Technical Paper

Development of High Efficiency Rectifier with MOSFET in “eSC Alternator”

2017-03-28
2017-01-1228
Alternator, which supplies electric energy to a battery and electrical loads when it is rotated by engine via belt, is one of key components to improve vehicle fuel efficiency. We have reduced rectification loss from AC to DC with a MOSFET instead of a rectifier diode. It is important to turn on the MOSFET and off during a rectification period, called synchronous control, to avoid a current flow in the reverse direction from the battery. We turn it off so as to remain a certain conduction period through a body diode of the MOSFET before the rectification end. It is controlled by making a feedback process to coincide with an internal target conduction period based on the rotational speed of the alternator. We reduced a voltage surge risk at turn-off by changing the feedback gain depending on the sign of the time difference between the measured period and the target.
Technical Paper

Virtual Development for In-Vehicle Network Topology – A Case Study of CAN FD Physical Layer

2017-03-28
2017-01-0023
In-vehicle network communication is evolving faster speeds and higher performance capabilities, connecting the information possessed by ECU and sensors with the in-vehicle electronic systems which are continuing to develop. With the evolution of the complicated networks, it is becoming difficult to develop them without many verification of actual machine. On the other hand, as for the verification means required at the logic level or physical level for a network verification through ECU design, virtual verification in the whole vehicle is difficult due to speed increases and the sheer size of the system. Therefore, it is only applicable for systems which are limited to a domain or an area, and flexible and timely utilization would be difficult due to the changes in specifications.
Technical Paper

Cold Storage Air Conditioning System for Idle Stop Vehicle

2013-04-08
2013-01-1287
The number of idle-stop vehicles is rapidly increasing in recent years, and air-conditioning technologies that extend engine stopped time while maintaining the cabin comfort are required. When the engine stops during idle- stop mode, the air conditioner also stops functioning. To maintain cabin comfort, the engine is restarted to work the air-conditioning cycle, which reduces the fuel saving effects. As a countermeasure, a cold storage air conditioning system has been proposed. The system extends engine non-operation time by using cold storage for generating cool air while the engine is stopped. We have integrated this technology into an evaporator, which is used in the air-conditioning cycle, and the system has a short cold storage period and a necessary cold release period. This report describes its concept and effects.
Technical Paper

Development of a Compact and High-Performance Radiator for Thermal Management of Environmentally-Friendly Cars

2018-04-03
2018-01-0087
To comply with increasing fuel efficiency regulations, a low temperature radiator (LT radiator) is required to cool the charge-air system of a turbocharged engine. These engines are important to use for environmentally-friendly cars. Since heavy-duty and high-performance cars demand high cooling performance, the main radiator alone is typically insufficient in meeting the vehicle’s cooling requirements. An additional radiator installed in the front of the wheel-well is required to meet the extra cooling demand. In order to install this radiator in the front of the wheel-well, guaranteed performance in the limited packaging space and impact resistance of the leading tube edge are required. We developed the Supplementary Inner-Fin Radiator (SIR) which achieves the compact, high-performance, and durability requirements by use of an inner-fin tube (I/F tube). The purpose of this paper is to report our design approach and product specifications of the SIR.
Technical Paper

Evaluation Method of Thermal Sensation and Comfort for Air Conditioning Performance Reduction

2018-04-03
2018-01-0775
As a method of maintaining thermal sensation and comfort inside a passenger compartment, not only a conventional HVAC system but also a combination of a HVAC system and other devices such as seat heaters, a steering wheel heater, ventilation seats are increasing. This research developed a method to evaluate thermal sensation of a human body when using these various thermal control devices. This method can evaluate the heat balance of the human body by calculating the amount of heat exchange between a human body and the external environment, and it takes into consideration the influence of heat exchange by heat conduction with seats or a steering wheel. The human thermal model is made by dividing a human body into various segments, and it is the model that considers heat transport by blood flow for each segment.
Technical Paper

Maximizing Coasting of 48 V Vehicles with Cold-Storage Evaporator

2018-05-30
2018-37-0023
One of the main features of 48 V vehicles is the ability to coast at high speeds with the Internal Combustion Engine (ICE) off. This can be realized due to the high torque and power the 48 V motor-generator provides which allows a quick and smooth re-cranking of the ICE. The coasting feature reduces the fuel consumption depending on frequency and duration of the coasting events. This depends in turn on driving pattern, driving style, State-of-Charge of the 48 V and 12 V batteries and the air-conditioning (A/C) system. In summer, if the A/C runs with a mechanical belt-driven compressor, the cabin inlet air temperature from the evaporator inevitably increases during each coasting event as the ICE turns off and cannot operate the compressor. If the evaporator temperature reaches a certain threshold at which the cabin comfort is noticeably affected, the ICE is re-cranked for resuming air-conditioning.
Technical Paper

Compact High-Efficiency 2-Layer Blower Fan for HVAC

2016-04-05
2016-01-0193
In recent years, the spread of eco-car has led to the demand for adaptation to low heat source, high efficiency and low noise in vehicle air conditioner. On the other hand, larger interior space of vehicle to assure passenger comfort is demanded, so that the car air-conditioner is required to be smaller. Therefore, we adopted 2-layer HVAC for the air conditioner which can respond to a low heat source. At the same time we have developed the compact high-efficiency 2-layer blower fan for HVAC in order to enable the 2-layer HVAC to be mounted on eco-car with smaller space than conventional HVAC. Generally, because axial flow velocity increases resulting from downsizing of the blower, the ununiform velocity distribution in the axial direction and the turbulent flow between fan blades occurs. It causes the efficiency decrease. To satisfy both downsizing and high-efficiency of the 2-layer blower, we have developed new technologies which can make the flow uniform between fan blades.
Technical Paper

Evolution of Gasoline Direct Injection System for Reduction of Real Mode Emission

2019-04-02
2019-01-0265
Continuous improvement of gasoline engine emissions performance is required to further protect the global environment and also the impact of emissions on a local level. During real world driving, transient engine operation and variation in fuel injection, airflow, and wall temperature are key factors to be controlled. Due to the limited opportunity for optimization of engine control, generation of a well-mixed fuel spray is necessary to create a suitable combustion environment to minimize emissions. Optimum spray performance achieves minimum surface wetting as well as promoting evaporation and diffusion if wetting occurs. Improvement in spray homogeneity is an important step to achieve this. Higher fuel pressure is initially considered to achieve improvements, as it is expected to improve mixture formation by reduction of wall wetting due to high atomization and lower penetration, as well as improvement in spray homogeneity.
Journal Article

Ejector Energy-Saving Technology for Mobile Air Conditioning Systems

2017-03-28
2017-01-0120
This study reports on a new generation ECS (Ejector Cycle System) which includes a highly efficient ejector and a novel system configuration. The ejector is working as a fluid jet pump that recovers expansion energy which is wasted in the conventional refrigeration cycle decompression process, and converts the recovered expansion energy into pressure energy and raises the compressor suction pressure. Consequently, the ejector system can reduce power consumption of the compressor by using the above mentioned pressure-rising effect and improve energy efficiency of the refrigeration cycle. The ejector consists of a nozzle, a suction section, a mixing section and a diffuser. The objective of this study is to improve actual fuel economy of all vehicles by ejector technology. The previous generation ECS was reported in 2012 SAE World Congress1. Now, a new generation ECS has been successfully developed and released in the market for Mobile Air Conditioning systems as of 2013.
Journal Article

Reduction of Cranking Noise from High Voltage Starter for One-Motor Two-Clutch Hybrid Systems

2017-03-28
2017-01-1167
In this paper, we propose a high voltage brushless AC starter that contributes to improved fuel efficiency and a reduction in the cost of the one-motor two-clutch hybrid system, which we call a 1MG2CL system. We have named it the HV starter, and it is composed of an AC motor, inverter and pinion with a shift mechanism. One of the issues with the 1MG2CL system is the high electrical energy when starting an ICE as it switches over from EV drive to HEV drive. While the ICE is starting, the main motor has to crank the ICE via the clutch; the clutch slips to absorb the main motor power, so the main motor has to output a high power to overcome the loss. Therefore, to contribute to reducing the electrical power by eliminating clutch slip losses, we developed an HV starter as a dedicated ICE starting device. Thanks to the reduction in electrical power, the HV starter is able to improve fuel efficiency and reduce system costs.
Journal Article

Ejector-Type Cool Box

2008-04-14
2008-01-0734
Ejector Cycle® development has been under way to improve refrigeration cycle performance and increase its efficiency in light of global environmental conservation. Ejector Cycle® can be applied to cool boxes that cool drinks using the refrigeration cycle of the vehicle air-conditioning system. We commenced deliberating Ejector Cycle® application to improve cool box system performance. Difficulties associated with the cool box include the decline in cabin air-conditioning performance due to simultaneous operation of the cabin air conditioning and cool box. We have solved this problem by using an ejector to achieve continuous operation with two evaporator temperatures in the same system. Furthermore, we have configured the cycle to be suitable for vehicle air-conditioning systems, designed a high-efficiency two-stage variable ejector, and addressed various system problems.
Journal Article

Multiplex Communication Protocol for Switch/Sensor/Actuator Network: “CXPI”

2016-04-05
2016-01-0057
The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
X