Refine Your Search

Topic

Author

Search Results

Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Journal Article

Low-Cost FC Stack Concept with Increased Power Density and Simplified Configuration Utilizing an Advanced MEA

2011-04-12
2011-01-1344
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in cost, size, durability and cold start-up capability with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Technical Paper

Feasibility Study of a New Optimization Technique for the Vehicle Body Structure in the Initial Phase of the Design Process

2007-05-15
2007-01-2344
This paper proposes a new hierarchical optimization technique for the vehicle body structure, by combining topology optimization and shape optimization based on the traction method. With the proposed approach, topology optimization is first performed on the overall allowable design domain in 3D. The surface is extracted from the optimization result and converted to a thin shell structure. Shape optimization based on the traction method is then applied to obtain an overall optimal body shape. In the shape optimization process, iterative calculations are performed in the course of consolidating parts by deleting those whose contribution is small. The result obtained by applying this method to the front frame structure of a vehicle is explained. The resultant optimal shape has stiffness greater than or equal to the original structure and is 35% lighter. This confirms the validity of the proposed technique. It was found, however, that some issues remain to be addressed.
Technical Paper

A Lightweight, Multifunctional Plastic Reinforcement for Body Panels

1990-02-01
900292
A light weight,multifunctional plastic reinforcement has been developed for the outer body panels of vehicles. This new plastic reinforcement,composed mainly of polyvinylchloride resin, epoxy resin and an organic foaming agent, provides a 63% weight reduction over conventional plastic reinforcements, while adding the damping function to outer body panels. This paper introduces the process followed in developing the new plastic reinforcement and describes its characteristics. This new plastic reinforcement is already employed in the Nissan S-Cargo model, and it will be adopted in other passenger car models to be released in the near future.
Technical Paper

Effective Numerical Simulation Tool for Real-World Rollover Accidents by Combining PC-Crash and FEA

2007-04-16
2007-01-1773
With SUVs and minivans accounting for a larger share of the US market in the past decade, rollover accidents have drawn greater attention, leading to more active research from different perspectives. This ranges from investigations for elucidating the basic causes and mechanisms of rollover accidents to studies of more advanced occupant protection measures. As the phenomenon of a rollover accident is longer in duration than frontal, side or rear impacts, it is relatively difficult [1] to simulate such accidents for experimental verification and also for proper evaluation of occupant restraint system performance. In this work, we focused on the trip-over type, which occurs most frequently, and performed simulations to reproduce real-world rollover accidents by combining PC-Crash and FEA.
Technical Paper

Development of Side Impact Air Bag System for Head and Chest Protection

1998-05-31
986165
Most of the side impact air bag systems in the current market are designed to protect the thorax area only. The new Head and Thorax SRS Side Impact Air Bag system, which Nissan recently introduced into the market, was designed to help provide additional protection for the head in certain side impacts. The system may help protect occupant head contacts when the vehicle collides into a tree, or the high hood of a large striking vehicle. This paper introduces the additional features and function of the new Head and Thorax SRS Side Impact Air Bag system, and some evaluation results in laboratory testing.
Technical Paper

Spot-weld Layout Optimization for Body Stiffness by Topology Optimization

2008-04-14
2008-01-0878
In general, the improvement of vehicle body stiffness involves a trade-off with the body weight. The objective of this research is to derive the lightest-weight solution from the original vehicle model by finding the optimized spot-weld layout and body panel thickness, while keeping the body stiffness and number of spot welds constant. As the first step, a method of deriving the optimal layout of spot welds for maximizing body stiffness was developed by applying the topology optimization method. While this method is generally used in shape optimization of continuous solid structures, it was applied to discontinuous spot-weld positions in this work. As a result, the effect of the spot-weld layout on body stiffness was clarified. In the case of the body used for this research, body stiffness was improved by about 10% with respect to torsion and vertical and lateral bending.
Technical Paper

High Throughput Computation of Optical Flow with a High Frame-Rate Camera

2008-04-14
2008-01-0900
This paper presents a new method for calculating optical flow using data from a high frame-rate camera. We focused on a feature of image data captured with a high frame-rate camera in which objects do not move more than one pixel between successive frames. This approach eliminates repetitive processing for object identification among frames taken at different sampling times. High-speed processing hardware architecture was designed with sequential processing only, and the algorithm was implemented in a field programmable gate array. The resultant unit can calculate optical flow for a 640×120 pixel size image with a 480-Hz processing cycle and 0.5-μsec processing latency.
Technical Paper

A Study of Car Body Structure to Reduce Environmental Burdens

2003-10-27
2003-01-2833
In the initial design stage, it is important to discuss what kind of body concept is effective from a viewpoint of environment burden reduction. This paper describes the importance of both weight reduction and recycling through conducting LCA (Life Cycle Assessment) for four kinds of body structures. In addition, using each software, DFMA (Design for Manufacture and Assembly), DFE (Design for Environment) and LCA to parts unit, each effectiveness was discussed through the assessment of the material-hybrid body.
Technical Paper

Restraint System Optimization for Dual Test Configurations of Frontal Crashes

2004-03-08
2004-01-1626
The numerical relations between occupant restraint systems and injury indexes were investigated by multi-parameter optimization of an integrated restraint system model of frontal crash simulations. This paper proposes a method of optimizing restraint systems in two types of test configurations: a 35-mph full overlap crash model and a 40-mph 40%-offset crash model.
Technical Paper

Analysis of Rollover Restraint Performance With and Without Seat Belt Pretensioner at Vehicle Trip

2002-03-04
2002-01-0941
Eight rollover research tests were conducted using the 2001 Nissan Pathfinder with a modified FMVSS 208 dolly rollover test method where the driver and right front dummy restraint performance was analyzed. The rollover tests were initiated with the vehicle horizontal, not at a roll angle. After the vehicle translated laterally for a short distance, a trip mechanism was introduced to overturn the vehicle. Retractor, buckle, and latch plate performance in addition to the overall seat belt performance was analyzed and evaluated in the rollover test series. Retractor pretensioners were activated near the rollover trip in three of the tests to provide research data on its effects. Various dummy sizes were utilized. The test series experienced incomplete data collection and a portion of the analog data was not obtained. National Automotive Sampling System (NASS) data was also analyzed to quantify the characteristics of real world rollovers and demonstrated the benefits of restraint use.
Technical Paper

Numerical Analysis of Vehicle Frontal Crash Phenomena

1992-02-01
920357
Recent years have seen remarkable advances in the development and diffusion of numerical analysis techniques using the finite element method for examining vehicle crashworthiness. The importance of numerical analysis in vehicle development work has also increased. One reason for this is that the use of numerical analysis makes it possible to study crash phenomena in detail based on calculated data which can not be obtained experimentally. In this study, the non-linear dynamic finite element program PAM-CRASH was applied to a vehicle frontal crash simulation to calculate the body deformation modes, the force transmitted at different sections of the body structure and the internal energy accumulation of each component. The results obtained provide a quantitative explanation of the deformation mechanism of the body structure.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Appling CAE to Understand the Causality of Dummy Neck Injury Readings

2011-04-12
2011-01-1069
The progress of computer technology and CAE methodology makes it possible to simulate dummy injury readings in vehicle crash simulations. Dummy neck injuries are generally more difficult to simulate than injuries to other regions such as the head or chest. Accordingly, improving the accuracy of dummy neck injury data is a major concern in frontal occupant safety simulations. This paper describes the use of an advanced airbag modeling methodology to improve the accuracy of dummy neck injury readings. First, the following items incorporated in the advanced airbag model are explained. (1) The Finite Point Method (FPM) is used to simulate the flow of gas. (2) A folding model is applied to simulate the folded condition. (3) The fabric material properties used in the simulation take into account anisotropy in the fiber directions and the nonlinear, hysteresis characteristics of stiffness.
Technical Paper

Application of 980 MPa Grade Advanced High Strength Steel with High Formability

2018-04-03
2018-01-0625
There are strong demands for vehicle weight reductions so as to improve fuel economy. At the same time, it is also necessary to ensure crash safety. One effective measure for accomplishing such both requirements conflicting each other is to apply advanced high strength steel (AHSS) of 780 MPa grade or higher to the vehicle body. On the other hand, higher strength steels generally tend to display lower elongation causing formability deterioration. Nissan Motor Corporation have jointly developed with steel manufacturers a new 980 MPa grade AHSS with high formability with the aim of substituting it for the currently used 590 MPa grade high-tensile steel. Several application technologies have been developed through the verifications such as formability, resistance spot weldability, crashworthiness, and delayed fracture.
Technical Paper

Evaluation and Improvement of Vehicle Roll Behavior

1997-02-24
970093
Vehicle roll behavior has a large influence on how drivers evaluate handling performance. This paper describes an approach to quantifying roll behavior experimentally and presents a method for designing suspension properties to improve the sensation of roll. In this study, it was found that using pitch motion as an evaluation index results in good correspondence with subjective evaluations. To obtain acceptable roll behavior, it is important to control pitch motion during roll to a lower mode at the front end relative to the rear. This desirable behavior can be achieved by designing suitable roll center characteristics, nonlinear load changes and damping force coefficients.
Technical Paper

Multi-parameter, Multi-objective Optimization of Injury Indexes of Vehicle Crash Models

2005-04-11
2005-01-1302
This paper presents a method for optimizing occupant restraint system parameters in vehicle frontal crashes. Simulation models incorporating restraint systems and dummies are used for predicting injury indexes. A full-scale survey of all of the design parameters related to the injury indexes would require a vast number of simulations. Therefore, the Design of Experiments (DOE) method involving a minimum number of experiments is more realistic. However, dummy behavior often shows discontinuity if the dummy comes in contact with the steering wheel, so it is not predicted well with usual DOE methods. This paper shows how to incorporate such discontinuity in a DOE study and how to optimize the restraint system parameters to reduce occupant injury indexes. It also discusses the feasibility of this method for integrated optimization of 50th percentile and 5th percentile dummies.
Technical Paper

Development of Door Guard Beams Utilizing Ultra High Strength Steel

1981-02-01
810031
Door guard beams have been developed through the utilization of ultra high strength steel (tensile strength>100 kg/mm2). At first, the sheet metal gauge was reduced in proportion to the strength of the ultra high strength without changing the shape of the beam section. This caused beam buckling and did not meet guard beam specifications. Analyzing this phenomena in accordance with the buckling theory of thin plates, a design criteria that makes effective use of the advantages of ultra high strength was developed. As a result, our newly designed small vehicle door guard beams are 20% lighter and 26% thinner than conventional ones. This makes it possible to reduce door thickness while increasing interior volume.
Technical Paper

A Consideration of Vehicle's Door Shutting Performance

1981-02-01
810101
Many papers have mentioned, in passing, a phenomena that is known as “airtightness”, which is one factor that hinders automobile doors from closing. It also causes the eardrums of any passengers in the vehicle to be temporarily pressurized when the door is closed. However, few documents have considered this phenomena in detail. In this paper, we investigate the magnitude of “airtightness” as it affects ear pressure and examine its relationship to such factors as the volume of the passenger compartment, door's opening area and its inertial moment. Finally, we utilized estimation methods to predict its influence on the force required to close the door and the amount of the resultant air draft.
Technical Paper

On Crashworthiness of Nissan ESV

1974-02-01
740208
It is very difficult for small cars to protect occupants in high-speed collisions. The Nissan ESV is of lightweight monocoque construction, and its body possesses crashworthiness designed to match the occupant protection system. This vehicle has experimentally proved to be effective in occupant protection. This paper primarily deals with the most difficult problem of crashworthiness in frontal collisions, first referring to the basic analyses and test results acquired in the development process, and then setting forth the body construction and test results of the two types of Nissan ESV (E1 and E2).
X