Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Keys to Understanding Spray-guided Combustion of a Narrow-spacing Gasoline Direct Injection SI Engine with a Centrally Mounted Multi-hole Injector

2009-04-20
2009-01-1497
Spray-guided gasoline direct injection SI engines attract as one of new generation lean-burn engines to promise CO2 reduction. These typically adopt “narrow-spacing” concept in which an injector is centrally mounted close to a spark plug. Therefore, geometric targets of the fuel spray and a position of the spark plug have to be exactly limited to maintain a proper mixture in the spark gap. In addition, the stable combustion window is narrow because the spark ignition is limited in a short time during and immediately after the injection. These spatial and temporal restrictions involve some intractable problems concerning the combustion robustness due to the complicate phenomena around the spark plug. The local mixture preparation near the spark plug significantly depends on the spray-induced charge motion. The intense flow induced by the motion blows out and stretches the spark, thereby affecting the spark discharge performance.
Technical Paper

Platooning Vehicles Control for Balancing Coupling Maintenance and Trajectory Tracking - Feasibility Study Using Scale-Model Vehicles

2020-04-14
2020-01-0128
Recently, car-sharing services using ultra-compact mobilities have been attracting attention as a means of transportation for one or two passengers in urban areas. A platooning system consisting of a manned leader vehicle and unmanned follower vehicles can reduce vehicle distributors. We have proposed a platooning system which controls vehicle motion based on the relative position and posture measured by non-contact coupling devices installed between vehicles. The feasibility of the coupling devices was validated through a HILS experiment. There are two basic requirements for realizing our platooning system; (1) all devices must remain coupled and (2) follower vehicles must be able to track the leader vehicle trajectory. Thus, this paper proposes two vehicle control method for satisfying those requirements. They are the “device coupling and trajectory tracking merging method” and the “trajectory shifting method”.
Journal Article

Ventilation Characteristics of Modeled Compact Car Part 1 Airflow Velocity Measurement with PIV

2008-04-14
2008-01-0732
In the present study, a model experiment is performed in order to clarify the ventilation characteristics of car cabin. This study also provides high precision data for benchmark test. As a first step, the ventilation mode is tested, which is one of the representative air-distribution modes. Part 1 describes the properties of the flow field in the cabin obtained by the experiment. Part 2 describes the ventilation efficiencies such as the age of air by using trace gas method. The properties of flow field are measured using particle image velocimetry (PIV). The mean velocity profiles, the standard deviation distribution, and the turbulence intensity distribution are discussed. The brief comparison between experiments and predictions of computational fluid dynamics (CFD) is also presented. In the comparison between experiment and CFD, the results showed similar flow field.
Journal Article

Ventilation Characteristics of Modeled Compact Car Part 2 Estimation of Local Ventilation Efficiency and Inhaled Air Quality

2008-04-14
2008-01-0731
In order to evaluate the ventilation characteristics of car interior, a model experiment was performed. Part 1 deals with the air flow properties in a half-scale car model. In this paper, a trace gas experimental method equipped with Flame Ionization Detector (FID) systems is introduced to examine the local ventilation efficiency and inhaled air quality in the car, which was ventilated at a flow rate of 100 m3/h and kept in an isothermal environment of 28°C in the experiment. Here, ventilation efficiency was evaluated by means of the Scales for Ventilation Efficiencies (SVEs), and inhaled air quality in terms of the influences of passive smoke and foot odor was evaluated by means of the Contribution Ratio of Pollution source 1 (CRP1). Therefore, calculation methods using trace gas concentration values were suggested for these indices, which were proposed based on the Computational Fluid Dynamics (CFD) technique.
Technical Paper

Measurement of Structural Attenuation of a Diesel Engine and its Applications for Reduction of Noise and Vibration

1991-11-01
912710
Structural attenuation of a running diesel engine measured by a new technique showed a constant value regardless of engine speeds. It was verified by this result that structural attenuation is a physical quantity unique to the structure of each engine and, therefore, a good indicator for evaluation of low noise engine structure. In addition, a hydraulic excitation test rig was devised to measure structural attenuation directly and to make effective use of it for noise reduction. Based on the accurate measurements by the excitation test rig, modal analysis and system simulation were conducted for implementation of countermeasures against noise.
Technical Paper

The Influence of Tire Deformation on Ride Comfort of a Truck

1990-10-01
902268
When truck tires have a deformation such as radial runout, flat spot, and abnormal wear as a result of panic braking, they affect vehicle vibration in the form of displacement input whose spectrum involves higher order terms of tire revolution. While a truck has vibration modes of frame bending as well as pitching and unsprung-mass viberation in the input frequency range, the tire displacement input induces vehicle vibration as a combination of these modes. Results of calculations and experiments of a 4x2 medium-duty truck are analyzed and an example of means for improving ride comfort is described in this paper.
Technical Paper

Fuel Injection Control Systems that Improve Three Way Catalyst Conversion Efficiency

1991-02-01
910390
A fuel control method to reduce the harmful exhaust gas from SI engines is proposed. As is well known, both the amplitude and the frequency of the limit cycle in a conventional air-fuel ratio control system are determined uniquely by parameters in the system. And this limits our making full use of the oxygen storage effect of TWC. A simple model of TWC reaction revealed the relationship between maximum conversion efficiency and both the amplitude and the frequency in a air fuel control system. It also revealed that TWC conversion efficiency attained to maximum levels when both the amplitude and the frequency of the limit cycle are selected so as to make full use of the oxygen storage effect of TWC. In order to achieve this, it is necessary to vary both the amplitude and the frequency arbitrarily.
Technical Paper

Development of Mitsubishi Flexible Fuel Vehicle

1991-02-01
910861
A flexible fuel vehicle (FFV) was evaluated through various tests for its potential as an alternative to the conventional gasoline vehicle. This paper presents the systems incorporated in the FFV and the test results. 50,000 mile emission durability tests were also performed and the potential of the FFV as a “Low Emission Vehicle” was assessed. As the result of extensive engineering work, we successfully developed a Galant FFV which exhibits very good durability and reliability. The emission control system which we have developed demonstrated that the vehicle has a good potential to comply with the California formaldehyde emission standard of 15 mg/mile. However, due to the large portion of unburnt methanol in the tail-pipe emissions, FFVs will have more difficulty than gasoline vehicles in meeting non-methane organic gas (NMOG) standards applicable to “Low Emission Vehicles”.
Technical Paper

A New Approach to Vehicle Interior Control

1991-02-01
910472
In order to meet increasing demands for safety and comfort in a vehicle compartment, automatic adjustment of seat, mirrors, steering wheel has been developed. The multiplex wiring system was constructed for the automatic adjustment of the cockpit elements to drivers preferred positions or to physique-matched settings based on ergonomic data. This paper describes the construction of the multiplex system and functions of automatic adjustment of the cockpit elements for comfortable driving position and better visibility.
Technical Paper

Reduction of Idling Rattle Noise in Trucks

1991-05-01
911044
Optimization of the clutch torsional characteristics is one of the effective methods to reduce the idling rattle noise. Many researches on th.s problem have been reported, but only few of them give sufficient consideration to the drag torque applied to the clutch disc during engine idling. This paper pays attention to the drag torque and discusses the mechanism of idling rattle noise by using vehicle testing, bench test with rotating torsional exciter and computer simulation. Reauction of Idling
Technical Paper

Passenger Car Engines for the 21st Century

1991-09-01
911908
During next decade, automotive engineers will take up unprecedented challenges to meet a variety of technical demands on passenger cars. While performance, refinement and reliability will continue to be major technical goals of passenger cars, reducing their impact on the environment not only in urban areas but also on the global basis will become an increasingly urgent issue. In addition, the need for energy and resources saving will necessitate development of more fuel efficient cars, exploitation of alternative energy and recycled materials. In this paper, the authors will review various alternative engines as candidates to satisfy the above demands. The authors will also discuss various alternative transportation energy sources such as alcoholic fuels, natural gas, hydrogen and electricity. Finally the trends of future passenger car engine design will be discussed.
Technical Paper

Development of Titanium Alloy Valve Spring Retainers

1991-02-01
910428
Beta Ti alloy valve spring retainers are newly developed for use in mass produced automobiles for the first time. Ti alloy valve spring retainers vith a weight saving of 42%, compared to steel retainers, have reduced the inertial weight of the valve train components by 6%. And this weight reduction has the benefit of increasing the upper limit of the engine speed, which improves the engine performance. Ti alloy valve spring retainers are cold forged by the conventional fabrication facilities for steel retainers, using Ti-22V-4Al (the beta Ti alloy) which possesses excellent cold workability in a solution treated condition. Oxygen surface hardening is applied to protect Ti alloy valve spring retainers from wear damage. In addition, aging treatment and shot blasting are performed to improve strength and stiffness of valve retainers.
Technical Paper

Development of Austempered Ductile Iron Timing Gears

1997-11-17
973253
Austempered ductile iron (ADI) is a material having excellent mechanical properties and damping capacity. However practical mass production of ADI gears has not been possible due to ADI's poor machinability and distortion during the austempering heat treatment. With a new process method of carrying out hobbing before austempering when the material is in its soft condition, then austempering it and lastly, conducting the shave finishing process, we have diminished the above defects and developed practical ADI gears. These new gears generate less noise than ordinary nitrocarburized steel gears and are superior in pitting resistance.
Technical Paper

Optimized Gasoline Direct Injection Engine for the European Market

1998-02-23
980150
GDI (Gasoline Direct Injection) engine adopting new combustion control technologies was developed and introduced into Japanese domestic market in August of 1996. In order to extend its application to the European market, various system modifications have been performed. Injectors are located with a smaller angle to the vertical line in order to improve the combustion stability in the higher speed range. A new combustion control method named “two-stage mixing” is adopted to suppress the knock in the low speed range. As a result of this new method, the compression ratio was increased up to 12.5 to 1 while increasing the low-end torque significantly. Taking the high sulfur gasoline in the European market into account, a selective reduction lean-NOx catalyst with improved NOx conversion efficiency was employed. A warm-up catalyst can not be used because the selective reduction lean NOx catalyst requires HC for the NOx reduction.
Technical Paper

Mixing Control Strategy for Engine Performance Improvement in a Gasoline Direct Injection Engine

1998-02-23
980158
Spray motion visualization, mixture strength measurement, flame spectral analyses and flame behavior observation were performed in order to elucidate the mixture preparation and the combustion processes in Mitsubishi GDI engine. The effects of in-cylinder flow called reverse tumble on the charge stratification were clarified. It preserves the mixture inside the spherical piston cavity, and extends the optimum injection timing range. Mixture strength at the spark plug and at the spark timing can be controlled by changing the injection timing. It was concluded that reverse tumble plays a significant role for extending the freedom of mixing. The characteristics of the stratified charge combustion were clarified through the flame radiation analyses. A first flame front with UV luminescence propagates rapidly and covers all over the combustion chamber at the early stage of combustion.
Technical Paper

Liquid Phase Thermometry of Common Rail Diesel Sprays Impinging on a Heated Wall

2007-07-23
2007-01-1891
An experimental study was carried out on visualization of liquid phase temperature distributions in high-pressure diesel sprays impinging on a heated wall. Naphthalene/TMPD-exciplex fluorescence method and pyrene-excimer fluorescence method were utilized for the thermometry. The sprays were injected into a high-pressure and high-temperature gaseous environment. The nozzle hole diameter was 0.100 mm or 0.139 mm. The results showed that cool pockets were formed at the tip and in the impinging part of the sprays. The spray for the nozzle with 0.100 mm hole was heated up faster near the nozzle than for the nozzle with 0.139 mm hole.
Technical Paper

Development of High Thermal Efficiency and Small-Size Gas Engine System Using Biomass Gas Fuel

2007-07-23
2007-01-2042
Biomass is one of the attractive alternative fuels, which exists dispersively. Small size gas engine power generation with gasification biomass gas is one of the efficient methods. However, since its calorific value is lower and its composition can be affected by gasifying conditions, it is difficult to stabilize and achieve high thermal efficiency engine operation. This study aims to develop a small size gas engine system with biomass gas by modifying the control system of a conventional spark ignition engine. In this paper, effect of fuel composition on combustion was clarified experimentally to get guideline for the engine control system.
Technical Paper

Development of a Small Size Gas Engine System with Biomass Gas (Combustion Characteristics of The Wood Chip Pyrolysis Gas)

2007-08-05
2007-01-3612
This study aims to develop a small size gas engine system with biomass gas by modifying the control system of a conventional spark ignition engine. In this paper, combustion characteristics of typical biomass gas assuming the wood chip pyrolysis gas, whose lower heating value was about 1/6 of the city gas in Japan, were investigated. Engine control system for biomass gas was also examined. It was confirmed that simulated biomass gas could achieve high thermal efficiency and stable combustion for wide range equivalence ratio without knocking and at low emissions. Automatic engine operation with real time in-cylinder gas pressure analysis was also tried under fuel composition change.
Technical Paper

Effect of the Right-and-left Torque Vectoring System in Various Types of Drivetrain

2007-08-05
2007-01-3645
This paper describes the calculative verification of the effect of the right-and-left torque vectoring system in various types of drivetrain, namely, the front wheels only, the rear wheels only, and both front and rear wheels in FWD, RWD, and AWD vehicles. The effect is evaluated by calculating the vehicle dynamics limit; maximum acceleration and cornering ability. The right-and-left vectoring torque, which is needed for expanding the vehicle dynamics limit, is also calculated. And finally, the paper evaluates the suitable wheels for which the system should be applied in each drivetrain. The application to the front wheels is more effective for FWD vehicles. On the other hand, the application to the rear wheels is more effective for RWD and AWD vehicles.
Technical Paper

Common Rail Fuel Injection System for Improvement of Engine Performance on Heavy Duty Diesel Engine

1998-02-23
980806
With the intention of improving engine performance and emissions, the authors examined the influence of the method of initial fuel injection quantity reduction and of the injector configuration of a common rail fuel injection system on engine performance and exhaust emissions. Results showed that decreasing the nozzle hole diameter was an effective way to reduce the initial injection quantity without increasing black smoke. Compared to a three-way type injector, it was found that a two-way type injector can greatly reduce the amount of fuel leakage from the electromagnetic injector control valve and fuel consumption could be further improved by reduction of the driving loss. Furthermore, the increase of driving losses with higher injection pressure was small, and as a result, higher pressure injection was possible.
X