Refine Your Search

Topic

Author

Search Results

Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

Comparison between FR-4 and Ceramic Substrate

2008-10-07
2008-36-0361
This paper investigates the application of thick film hybrid circuit technology on ceramic substrate in comparison to the main stream substrate FR-4 (Flame Retardant 4) for PCB implementation. The study is based on computer models for these very substrates in order to simulate the propagation of heat through convection and conduction within the material boundaries. In order to simulate electronic components surface mounted, different heat sources are randomly arranged on physical contact to the surface of the material under investigation. The results emphasize and discern the usage of both substrates and its most suitable environment verifying the application towards vehicular integration. Future study may include experimental analysis for simulated data verification and validation of thick film hybrid circuit technology for the automotive industry.
Technical Paper

Laser Welding: An Exploratory Study towards Continuous Improvement on Stainless Steel Welding Joints

2009-10-06
2009-36-0330
The utilization of Laser welding process has increased during last years in several areas of industry, due to many benefits that can be achieved with this technology, such as: flexibility, productivity and quality. Thus, the optimization of Laser welding processes has been considered as a “green field” to be explored by Laser manufacturers, automation companies and process/project engineers. Nowadays there are few researches that provide a roadmap for Laser welding processes improvement that approaches both the aspects and characteristics applied to evaluate the Laser weld application performance. Therefore, this paper has per its main purpose through an exploratory study to provide parameters toward continuous improvement of Laser welding process considering both types of Lasers: Laser spot weld and Laser seam weld of stainless steel joints, thus this work may be considered as theoretical and practical reference to be applied by people involved with Laser welding applications.
Technical Paper

Fatigue Behavior of Semi-Solid Formed A357-T6 Aluminum

2001-03-05
2001-01-0413
The fundamental relationship between semi-solid processing and microstructure and their effect on the flow characteristics of semi-solid metals have been studied for several years. However, how the process related microstructure influences fatigue properties has not been given the same attention. This study examines the influence of process-related microstructure on the fatigue properties of semi-solid formed A357 alloys. High-solid-fraction (62% solid) and low-solid-fraction (31% and 36% solid) semi-solid formed A357 was tested in axial fatigue with a stress ratio (R) equal to -1. The high solid fraction (HSF) material had better fatigue properties than the low solid fraction (LSF) material. This is attributed to the fatigue crack initiation mechanisms, as related to the fatigue crack initiation features and the strengths of the materials.
Technical Paper

A Model-Based Brake Pressure Estimation Strategy for Traction Control System

2001-03-05
2001-01-0595
This paper presents a brake pressure estimation algorithm for Delphi Traction Control Systems (TCS). A control oriented lumped parameter model of a brake control system is developed using Matlab/Simulink. The model is derived based on a typical brake system and is generic to other types of brake control hardware systems. For application purposes, the model is simplified to capture the dominant dynamic brake pressure response. Vehicle experimental data collected under various scenarios are used to validate the algorithm. Simulation results show that the algorithm gives accurate pressure estimation. In addition, the calibration procedure is greatly simplified
Technical Paper

Reliability of Resonant Micromachined Sensors and Actuators

2001-03-05
2001-01-0618
There are an increasing number of applications for resonant micromachines. Accelerometers, angular rate sensors, voltage controlled oscillators, pressure and chemical sensors have been demonstrated using this technology. Several of these devices are employed in vehicles. Vibrating devices have been made from silicon, quartz, GaAs, nickel and aluminum. Resonant microsystems are in constant motion and so present new challenges in the area of reliability for vehicular applications. The impact of temperature extremes, cyclic fatigue, stiction, thermal and mechanical shock on resonant device performance is covered.
Technical Paper

The Solution for Steady State Temperature Distribution in Monolithic Catalytic Converters

2001-03-05
2001-01-0941
This paper presents a simplified thermal model for round catalytic converters in steady state operation. Using this model, the analytic solution for the temperature distribution in the monolithic substrate is obtained. This analytic solution in the substrate is, then, combined with those in the intumescent mat [1] and the metal shell to obtain the temperature profile in the radial direction of the converter except for three unknown temperatures at the three material interfaces, which can be solved using an Excel application program. This analytical temperature solution facilitates the studies of the effects of various design parameters such as the exhaust gas temperature, exhaust gas flow rate, substrate cell geometry, converter dimensions, and ambient temperature and flow, etc.
Technical Paper

Development Experience with Steer-by-Wire

2001-08-20
2001-01-2479
Recent advances in dependable embedded system technology, as well as continuing demand for improved handling and passive and active safety improvements, have led vehicle manufacturers and suppliers to actively pursue development programs in computer-controlled, by-wire subsystems. These subsystems include steer-by-wire and brake-by-wire, and are composed of mechanically de-coupled sets of actuators and controllers connected through multiplexed, in-vehicle computer networks; there is no mechanical link to the driver. This paper addresses fundamental benefits and issues of steer-by-wire, especially those related to automated vehicle control and steering feel quality as perceived by the driver.
Technical Paper

An Analytical Assessment of Rotor Distortion Attributed to Wheel Assembly

2001-10-28
2001-01-3134
The lateral runout of disc brake corner components can lead to the generation of brake system pulsation. Emphasis on reducing component flatness and lateral runout tolerances are a typical response to address this phenomenon. This paper presents the results of an analytical study that examined the effect that the attachment of the wheel to the brake corner assembly could have on the lateral distortion of the rotor. An analysis procedure was developed to utilize the finite element method and simulate the mechanics of the assembly process. Calculated rotor distortions were compared to laboratory measurements. A statistical approach was utilized, in conjunction with the finite element method, to study a number of wheel and brake corner parameters and identify the characteristics of a robust design.
Technical Paper

Instrument Panel Skin Manufactured with 100% Recycled TPO Material

2002-03-04
2002-01-1262
Desiring to push thermoplastic poly-olefin (TPO) technology to its fullest limits and to confirm our position as the leader in the manufacturing of environmentally friendly TPO instrument panels, we have designed a process to manufacture 100% recycled instrument panel skins. This closed-loop process begins with extruding 100% recycled TPO flake into sheet stock to be painted and vacuum formed. The painted sheet is vacuum formed and the offal is ground into regrind flake, ready to be extruded again, thus completing the closed-loop process. This paper will describe a 100% closed loop recycling process for TPO instrument panels, discuss the intense validation process for recycled material and prove the robustness and durability of this interior solution.
Technical Paper

Development of a Haptic Braking System as an ACC Vehicle FCW Measure

2002-05-07
2002-01-1601
This work examines the development and implementation of a pulsing brake control system as part of a Forward Collision Warning (FCW) System for an Adaptive Cruise Control (ACC) prototype vehicle. The brake pulse is a likely candidate to be employed with visual and auditory cues in the event of an imminent collision alert level when the driver is not in ACC mode.
Technical Paper

The BRAKE Project - Centralized Versus Distributed Redundancy for Brake-by-Wire Systems

2002-03-04
2002-01-0266
This paper presents the objectives and preliminary results of the BRAKE project - a joint effort of Delphi Automotive Systems, Infineon Technologies, Volvo Car Corporation and WindRiver. The objective of this project is to use microelectronics technologies to design a distributed Brake-by-Wire system including: A distributed fault tolerant system for enhanced safety An extension of the OSEK based operating system for a distributed time triggered architecture An open interface between vehicle control, and brake system control The results comprise the requirements, interface specification (see [1]), a full simulation model, a hardware-in-the-loop bench, and a demonstration vehicle. The application has been developed using advanced automatic code generation for Infineon's TriCore based automotive microcontrollers.
Technical Paper

Open-Interface Definitions for Automotive Systems1 Application to a Brake by Wire System

2002-03-04
2002-01-0267
Today automotive system suppliers develop more-or-less independent systems, such as brake, power steering and suspension systems. In the future, car manufacturers like Volvo will build up vehicle control systems combining their own algorithms with algorithms provided by automotive system suppliers. Standardization of interfaces to actuators, sensors and functions is an important enabler for this vision and will have major consequences for functionality, prices and lead times, and thus affects both vehicle manufacturers and automotive suppliers. The investigation of the level of appropriate interfaces, as part of the European BRAKE project, is described here. Potential problems and consequences are discussed from both a technical and a business perspective. This paper provides a background on BRAKE and on the functional decomposition upon which the interface definitions are based. Finally, the interface definitions for brake system functionality are given.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Technical Paper

Development of an Analytical Tool for Multilayer Stack Assemblies

2011-10-06
2011-28-0083
The development of an analytical model for multilayer stack subjected to temperature change is demonstrated here. Thin continuous layers of materials bonded together deform as a plate due to their differing coefficients of thermal expansion upon subjecting the bonded materials to the change in temperature. Applications of such structures can be found in the electronics industry (the study of warpage issues in printed circuit boards) or in the aerospace industry as (the study of laminated thin sheets used as skin structures for load bearing members such as wings and fuselage). In automotive electronics, critical high-power packages (IGBT, Power FETs) include several layers of widely differing materials (aluminum, solder, copper, ceramics) subjected to wide temperature cyclic ranges. Modeling of such structures by using three-dimensional finite element methods is usually time consuming and may not exactly predict the inter-laminar strains.
Technical Paper

Thermal Comfort Prediction and Validation in a Realistic Vehicle Thermal Environment

2012-04-16
2012-01-0645
The focus of this study is to validate the predictive capability of a recently developed physiology based thermal comfort modeling tool in a realistic thermal environment of a vehicle passenger compartment. Human subject test data for thermal sensation and comfort was obtained in a climatic wind tunnel for a cross-over vehicle in a relatively warm thermal environment including solar load. A CFD/thermal model that simulates the vehicle operating conditions in the tunnel, is used to provide the necessary inputs required by the stand-alone thermal comfort tool. Comparison of the local and the overall thermal sensation and comfort levels between the human subject test and the tool's predictions shows a reasonably good agreement. The next step is to use this modeling technique in designing and developing energy-efficient HVAC systems without compromising thermal comfort of the vehicle occupants.
Technical Paper

USE OF CFD SIMULATION TO PREDICT CAVITATION IN AUTOMOTIVE HEATER CORES

2005-11-22
2005-01-4027
Several heater cores failed due to erosion by cavitation. After analysis, most of failures were explained by the presence of impurities in the heater core. It was then decided with the customer to use CFD simulation in order to prove that the cavitation was not caused by design concept of the tank. In this paper, we present the results of heater core simulations done in 2D and in 3D with Fluent. The objective is to simulate the pressure and velocity distribution within the heater core and to verify if the zones of low pressure are below the saturation vapour pressure of the fluid causing cavitation. In these areas, the deterioration of the tubes might occur due to erosion by cavitation.
Technical Paper

Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System

2000-03-06
2000-01-0817
This paper investigates a method for improving vehicle stability by incorporating feedback from a yaw rate sensor into an electric power steering system. Presently, vehicle stability enhancement techniques are an extension of antilock braking systems in aiding the driver during vehicle maneuvers. One of the contributors to loss of vehicle control is the reduction in tactile feedback from the steering handwheel when driving on wet or icy pavement. This paper presents research indicating that the use yaw rate feedback improves vehicle stability by increasing the amount of tactile feedback when driving under adverse road conditions.
X