Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Journal Article

Applying Virtual Statistical Modeling for Vehicle Dynamics

2010-04-12
2010-01-0019
Dimensional variation simulation is a computer aided engineering (CAE) method that analyzes the statistical efforts of the component variation to the quality of the final assembly. The traditional tolerance analysis method and commercial CAE software are often based on the assumptions of the rigid part assembly. However, the vehicle functional attributes, such as, ride and handling, NVH, durability and reliability, require understanding the assembly quality under various dynamic conditions while achieving vehicle dimensional clearance targets. This paper presents the methods in evaluating and analyzing the impacts of the assembly variations for the vehicle dynamic performance. Basic linear tolerance stack method and advanced study that applies various CAE tools for the virtual quality analysis in the product and process design will be discussed.
Journal Article

CAE Applications and Techniques used in Calculating the Snaps Insertions and Retentions Efforts in Automotive Trims

2014-04-01
2014-01-1032
A snap-fit is a form-fitting joint, which is used to assemble plastic parts together. Snap-fits are available in different forms like a projecting clip, thicker section or legs in one part, and it is assembled to another part through holes, undercuts or recesses. The main function of the snap-fit is to hold the mating components, and it should withstand the vibration and durability loads. Snap-fits are easy to assemble, and should not fail during the assembling process. Based on the design, these joints may be separable or non-separable. The non- separable joints will withstand the loads till failure, while separable joints will withstand only for the design load. The insertion and the retention force calculation for the snaps are very essential for snap-fit design. The finite element analysis plays a very important role in finding the insertion and the retention force values, and also to predict the failure of the snaps and the mating components during this process.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

The Effects of Detailed Tire Geometry on Automobile Aerodynamics - a CFD Correlation Study in Static Conditions

2009-04-20
2009-01-0777
A correlation study was performed between static wind tunnel testing and computational fluid dynamics (CFD) for a small hatchback vehicle, with the intent of evaluating a variety of different wheel and tire designs for aerodynamic forces. This was the first step of a broader study to develop a tool for assessing wheel and tire designs with real world (rolling road) conditions. It was discovered that better correlation could be achieved when actual tire scan data was used versus traditional smooth (CAD) tire geometry. This paper details the process involved in achieving the best correlation of the CFD prediction with experimental results, and describes the steps taken to include the most accurate geometry possible, including photogrammetry scans of an actual tire that was tested, and the level of meshing detail utilized to capture the fluid effects of the tire detail.
Journal Article

Steady and Transient CFD Approach for Port Optimization

2008-04-14
2008-01-1430
The intake and exhaust port design plays a substantial role in performance of combustion systems. The port design determines the volumetric efficiency and in-cylinder charge motion of the spark-ignited engine which influences the thermodynamic properties directly related to the power output, emissions, fuel consumption and NVH properties. Thus intake port has to be appropriately designed to fulfill the required charge motion and high flow performance. While turbulence intensity and air-mixture quality affect dilution tolerance and fuel economy as a result, breathing ability affects wide open throttle performance. Traditional approaches require experimental techniques to reach a target balance between the charge motion and breathing capacity. Such techniques do not necessarily result in an optimized solution.
Journal Article

Distortion and Residual Stresses in Nitrocarburized and Carbonitrided SAE 1010 Plain Carbon Steel

2008-04-14
2008-01-1421
The focus of this study was to determine the residual stress and retained austenite profiles for carbonitrided and nitrocarburized SAE 1010 plain carbon steel and to relate these profiles to one another and to the distortion resulting from heat treatment. Navy C-ring specimens were used for the purpose of this study and X-ray diffraction techniques were used to measure both residual stress and retained austenite. The findings from this research are then applied to a manufacturing application involving the surface hardening of a thin shelled, plain carbon steel automotive component.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

Effect of Operational Testing and Trim Manufacturing Process Variation on Head Injury Criterion in FMVSS 201 Tests

2008-04-14
2008-01-1218
This paper analyzes the difference in impact response of the forehead of the Hybrid III and THOR-NT dummies in free motion headform tests when a dummy strikes the interior trim of a vehicle. Hybrid III dummy head is currently used in FMVSS201 tests. THOR-NT dummy head has been in development to replace Hybrid III head. The impact response of the forehead of both the Hybrid III dummy and THOR dummy was designed to the same human surrogate data. Therefore, when the forehead of either dummy is impacted with the same initial conditions, the acceleration response and consequently the head Injury criterion (HIC) should be similar. A number of manufacturing variables can affect the impacted interior trim panels. This work evaluates the effect of process variation on the response in the form of Head Injury Criterion (HIC).
Journal Article

A Springback Compensation Study on Chrysler 300C Stamping Panels Using LS-DYNA®

2008-04-14
2008-01-1443
Springback compensation studies on a few selected auto panels from the hot selling Chrysler 300C are presented with details. LS-DYNA® is used to predict the springback behavior and to perform the iterative compensation optimization. Details of simulation parameters using LS-DYNA® to improve the prediction accuracy are discussed. An iterative compensation algorithm is also discussed with details. Four compensation examples with simulation predictions and actual panel measurement results are included to demonstrate the effectiveness of LS-DYNA® predictions. An aluminum hood inner and a high strength steel roof bow are compensated, constructed and machined based on simulation predictions. The measurements on actual tryout panels are then compared with simulation predictions and good correlations were achieved. Iterative compensation studies are also done on the aluminum hood inner and the aluminum deck lid inner to demonstrate the effectiveness of LS-DYNA® compensation algorithm.
Journal Article

Quality Inspection of Spot Welds using Digital Shearography

2012-04-16
2012-01-0182
Spot Welding is an important welding technique which is widely used in automotive and aerospace industry. One of the keys of checking the quality of the welds is measuring the size of the nugget. In this paper, the Shearographic technique is utilized to test weld joint samples under the thermal loading condition. The goal is to identify the different group of the nuggets (i.e. small, middle, and large sizes, which indicate the quality of spot welds). In the experiments, the sample under test is fixed by a magnet method from behind at the four edges. Thermal loading was applied in the back side and the sample is inspected using the digital Shearographic system in the front side. Results show the great possibility of classifying the nugget size into three groups and the measurement is well repeatable.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

A Hardware-in-the-loop Test Bench for Production Transmission Controls Software Quality Validation

2007-04-16
2007-01-0502
Production software validation is critical during software development, allowing potential quality issues that could occur in the field to be minimized. By developing automated and repeatable software test methods, test cases can be created to validate targeted areas of the control software for confirmation of the expected results from software release to release. This is especially important when algorithm/software development timing is aggressive and the management of development activities in a global work environment requires high quality, and timely test results. This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The powertrain model used within the HIL consists of an engine model and a detailed automatic transmission dynamics model. The model runs in an OPAL-RT TestDrive based HIL system.
Technical Paper

A Vehicle-to-Vehicle Communication Database for Infrastructureless Routing

2008-04-14
2008-01-1254
Traffic engineers use time-of-day travel time databases to characterize normal travel times on roads. This information is used by traffic management centers together with information from sensors in the highway to identify problems and to make alternate route recommendations. In this paper, the travel time database concept is extended to a vehicle-to-vehicle communications network for traffic and safety information, wherein the travel time database is generated and stored by vehicles in the network, and used by the vehicles to identify abnormal traffic conditions. This infrastructure-free approach is attractive due to the potential to eliminate highway sensor and sensor maintenance costs, which are major factors that limit the growth of traffic information beyond major roadways in urban regions. Initial work indicates that database storage requirements in the vehicle should be manageable.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

Back-Calculated Spindle Loads Sensitivity to Suspension Component Loads Availability

2008-04-14
2008-01-1103
In this study, two common types of suspension are used to study back-calculated spindle loads sensitivity to the availability of suspension component loads, under a severe loading proving ground event. The previously back-calculated spindle loads (Targets) are initially used as the inputs to resolve suspension component loads, which are considered as the “perfectly measured data”. With full factorial design of experiments (DOE), the back-calculated spindle loads using the known suspension component loads are then compared with the targets to produce the sensitivity of the spindle loads in comparison with the suspension components.
Technical Paper

Friction Stir Welding of Aluminum for Automotive Closure Panel Applications

2008-04-14
2008-01-0145
Friction stir welding (FSW) shows advantages for joining lightweight alloys for automotive applications. In this research, the feasibility of friction stir welding aluminum for an automotive component application was studied. The objective of this research was to improve the Friction Stir Spot Welding (FSSW) technique used to weld an aluminum closure panel (CP). The spot welds were made using the newly designed swing-FSSW technique. In a previous study (unpublished), the panel was welded from the thin to thick side using both an 8 mm and a 10 mm diameter tool. The 10 mm tool passed various fatigue tests; however, the target was to improve performance of the 8 mm tool, especially to increase the number of cycle before the first crack appearance during fatigue testing. In this study fatigue tests and static strength was recorded for weld specimens that were welded from thick-to-thin with an 8 mm diameter tool.
Technical Paper

Fluid Dynamic Study of Hollow Cone Sprays

2008-04-14
2008-01-0131
An analytical study of spray from an outwardly opening pressure swirl injector has been presented in this paper. A number of model injectors with varying design configurations have been used in this study. The outwardly opening injection process has been modeled using a modified spray breakup model presented in an earlier study. It has been observed that simulation results from the study clearly capture the mechanism by which an outwardly opening conical spray interacts with the downstream flow field. Velocity field near the tip of the injector shows that the conical streams emanating from an outwardly opening injector have the tendency to entrap air into the flow stream which is responsible for finer spray. A deviation from the optimum set of physical parameters showed a high propensity to produce large spray droplets. This study also emphasizes the importance of computational fluid dynamics (CFD) as an engineering tool to understand the complex physical processes.
Technical Paper

Adaptive nth Order Lookup Table used in Transmission Double Swap Shift Control

2008-04-14
2008-01-0538
The new Chrysler six-speed transaxle makes use of an underdrive assembly to extend a four-speed automatic transmission to six-speed. It is achieved by introducing double-swap shifts. During double-swap shift, learning the initial clutch torque capacity of the underdrive assembly's subsystem has a direct impact on the shift quality. A new method is proposed to compute and learn the initial clutch torque capacity of the releasing element. In this paper, we will outline a new mathematical method to compute and learn the accurate starting point of the clutch torque capacity for double swap shift control. The performance of the shift is demonstrated and the importance of the adaptation to shift quality is highlighted. An nth order lookup table is presented; this table contains n rows and m columns. Every row defines a relationship between the dependent variable such as actuator duty cycle and one independent variable such as transmission oil temperature, input torque or battery voltage.
X