Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

Integration of Reformer Model Based Estimation, Control, and Diagnostics for Diesel LNT Based Aftertreatment Systems

2010-04-12
2010-01-0569
Future government emission regulations have lead to the development and implementation of advanced aftertreatment systems to meet stringent emission standards for both on-road and off-road vehicles. These aftertreatment systems require sophisticated control and diagnostic strategies to ensure proper system functionality while minimizing tailpipe NOx and PM emissions across all engine operating conditions. In this paper, an integrated algorithm design approach with controls and diagnostics for an aftertreatment system consisting of a fuel doser, fuel reformer, LNT, DPF, and SCR is discussed.
Journal Article

Genetic Algorithm Based Gear Shift Optimization for Electric Vehicles

2016-06-17
2016-01-9141
In this paper, an optimization method is proposed to improve the efficiency of a transmission equipped electric vehicle (EV) by optimizing gear shift strategy. The idea behind using a transmission for EV is to downsize the motor size and decrease overall energy consumption. The efficiency of an electric motor varies with its operating region (speed/torque) and this plays a crucial role in deciding overall energy consumption of EVs. A lot of work has been done to optimize gear shift strategy of internal combustion engines (ICE) based automatic transmission (AT), and automatic-manual transmissions (AMT), but for EVs this is still a new area. In case of EVs, we have an advantage of regeneration which makes it different from the ICE based vehicles. In order to maximize the efficiency, a heuristic search based algorithm - Genetic Algorithm (GA) is used.
Technical Paper

Application of Simulation Based Methods in Development of Wet Clutch System

2012-01-09
2012-28-0022
The increased trend of automatic and automated transmissions across a breadth of applications is one of the market drivers for the development of wet clutch systems. Key product differentiators that drive the use of wet clutches in specific applications are (a) Compactness, (b) Low inertia, (c) Higher energy density, (d) Better NVH characteristics, and (e) Longer wear life. The above-stated product differentiators are dependent on performance of both the clutch cooling system and the friction system for two different operating events, namely engagement and disengagement. During engagement, slip under load between the clutch plates generates heat, which must be carried away by the oil, necessitating a high oil flow demand to all friction surfaces. Failing to achieve this leads to excessive plate temperatures and wear, ultimately resulting in poor performance and reduced clutch life.
Technical Paper

Comparative Studies of Drivetrain Systems for Electric Vehicles

2013-09-24
2013-01-2467
Vehicle electrification is being actively expanded into coming generations of passenger and commercial vehicles. This technology trend is helping vehicles to become more energy efficient. For electric vehicle (EV) city bus application, the system designers have been experimenting with a number of options including direct drive and multi-speed gearbox architectures. Direct drive scenario offers simplified drivetrain system, however requires a large and powerful electric motor. Multi-speed transmission system provides an opportunity to reduce motor size and optimize its operating points, but increases complexity from the architecture and controls point of view. This paper provides an overview of several common system layouts and examines their advantages and disadvantages. Vehicle simulation results are presented to compare direct drive vs. multi-speed technology from the gradeability, acceleration and energy consumption points of view.
Technical Paper

Downspeeding a Light Duty Diesel Passenger Car with a Combined Supercharger and Turbocharger Boosting System to Improve Vehicle Drive Cycle Fuel Economy

2013-04-08
2013-01-0932
Downsizing and downspeeding have become accepted strategies to reduce fuel consumption and criteria pollutants for automotive engines. Engine boosting is required to increase specific power density in order to retain acceptable vehicle performance. Single-stage boosting has been sufficient for previous requirements, but as customers and governments mandate lower fuel consumption and reduced emissions, two-stage boosting will be required for downsized and downsped engines in order to maintain performance feel for common class B, C, and D vehicles. A 1.6L-I4 diesel engine model was created, and three different two-stage boosting systems were explored through engine and vehicle level simulation to reflect the industry's current view of the limit of downsizing without degrading combustion efficiency with cylinder volumes below 400 cm₃. Some current engines are already at this size, so downspeeding will become much more important for reducing fuel consumption in the future.
Technical Paper

Part-Task Simulator for Truck Transmission Gear Shifting

1995-02-01
950167
A part-task simulator has been developed which concentrates on the functions related to transmission gear shifting in heavy duty trucks. By avoiding the complexity of full-feature simulators, a simple and cost-effective tool has been produced which allows training of the driver and study of the powertrain in a controlled environment. The components and operation of this new simulator are described, along with present and potential applications.
Technical Paper

Diesel Fan Drives, Do They Save Fuel?

1974-02-01
740595
A method for measuring diesel fuel consumption accurately over short distances of 5 miles or less was developed so that many fan-on, fan-off data sets could be gathered in a short time for statistical evaluation and analysis. A second test sequence involved fan-on, fan-off fuel economy tests over a highway route for comparison against the Cummins Vehicle Mission Simulation Computer Program. The predicted results from this program agreed substantially with the actual highway economy test data we obtained. More than 4 million charted miles of roads throughout the world are available through this program for predicting fan-off fuel savings. Results on several typical routes are given.
Technical Paper

Electronic Thermostat System for Automotive Engines

1988-02-01
880265
The paper suggests the benefits to be gained from using an electronic thermostat to improve control over the coolant temperature of an operating gasoline engine. It also describes the work undertaken to confirm that engine temperature can be maintained at a selected level and that the temperature level can be raised or lowered as desired in a running vehicle. The common automotive mechanical thermostat has the limitation of a fixed operating point with coolant flow rate dependent on temperature rise. Over its long life it has been refined economically to the point where the advantages of a more sophisticated device, made possible with electronics, have not been explored in depth. Recent electronic advances, however, make possible the addition of features that should justify the economic differential. The advantages and features that can be obtained with an electronic thermostat will be presented along with design considerations and test results.
Technical Paper

Optimization of Refrigerant Flow Management in a Dual-Unit Air Conditioning System

2000-03-06
2000-01-0975
Optimization of vehicle air conditioning performance at various drive cycles and ambient conditions can be achieved by regulating and distributing the refrigerant flow entering evaporators. Thermostatic expansion valve (TXV), as a flow control device, has been a key element in improving vehicle A/C system operating efficiency and maximizing cooling capacity. Three scenarios are addressed in this paper: (a) the selection of TXVs for a sports utility vehicle (SUV) climate control system, in which a front HVAC unit and an auxiliary HVAC unit are installed; (b) the methodology of developing a goal-oriented criterion for identifying the TXV combination to fulfill the optimization of A/C system performance; and (c) the analytical and experimental evaluation of vehicle cooling performance by varying TXV combinations in various vehicle operating modes.
Technical Paper

Switching Response Optimization for Cylinder Deactivation with Type II Passenger Car Applications

2014-04-01
2014-01-1704
An advanced Variable Valve Actuation (VVA) system is optimized for response time in order to provide robust switching at high engine speeds. The VVA system considered is Cylinder Deactivation (CDA) for the purpose of improving fuel economy. Specifically, a Switching Roller Finger Follower (SRFF) on a Dual Overhead Camshaft (DOHC) engine is optimized for cylinder deactivation. The objective of this work is to (1) improve the latch response time when the system response is the slowest, and (2) balance the “ON” and “OFF” response time. A proper tradeoff was established to provide the minimum switching time such that deactivation and reactivation occurs seamlessly and in the right sequence. The response time optimization is accomplished while maintaining the existing packaging space of the overhead. A camshaft with a single lobe per SRFF device on a type II valvetrain was used as the baseline configuration for this study.
X