Refine Your Search

Topic

Search Results

Video

Vertical Picture-Frame Wing Jig Structure Design with an Eye to Foundation Loading

2012-03-14
The foundation of many production aircraft assembly facilities is a more dynamic and unpredictable quantity than we would sometimes care to admit. Any tooling structures constructed on these floors, no matter how thoroughly analyzed or well understood, are at the mercy of settling and shifting concrete, which can cause very lengthy and costly periodic re-certification and adjustment procedures. It is with this in mind, then, that we explore the design possibilities for one such structure to be built in Belfast, North Ireland for the assembly of the Shorts C-Series aircraft wings. We evaluate the peak floor pressure, weight, gravity deflection, drilling deflection, and thermal deflection of four promising structures and discover that carefully designed pivot points and tension members can offer significant benefits in some areas.
Journal Article

Expanding the Use of Robotics in Airframe Assembly Via Accurate Robot Technology

2010-09-28
2010-01-1846
Serial link articulated robots applied in aerospace assembly have largely been limited in scope by deficiencies in positional accuracy. The majority of aerospace applications require tolerances of +/−0.25mm or less which have historically been far beyond reach of the conventional off-the-shelf robot. The recent development of the accurate robot technology represents a paradigm shift for the use of articulated robotics in airframe assembly. With the addition of secondary feedback, high-order kinematic model, and a fully integrated conventional CNC control, robotic technology can now compete on a performance level with customized high precision motion platforms. As a result, the articulated arm can be applied to a much broader range of assembly applications that were once limited to custom machines, including one-up assembly, two-sided drilling and fastening, material removal, and automated fiber placement.
Journal Article

Applied Accurate Robotic Drilling for Aircraft Fuselage

2010-09-28
2010-01-1836
Once limited by insufficient accuracy, the off-the-shelf industrial robot has been enhanced via the integration of secondary encoders at the output of each of its axes. This in turn with a solid mechanical platform and enhanced kinematic model enable on-part accuracies of less than +/−0.25mm. Continued development of this enabling technology has been demonstrated on representative surfaces of an aircraft fuselage. Positional accuracy and process capability was validated in multiple orientations both in upper surface (spindle down) and lower surface (spindle up) configurations. A second opposing accurate robotic drilling system and full-scale fuselage mockup were integrated to simulate doubled throughput and to demonstrate the feasibility of maintaining high on-part accuracy with a dual spindle cell.
Journal Article

Utilization of a Vision System to Automate Mobile Machine Tools

2014-09-16
2014-01-2271
In an attempt to be more flexible and cost effective, Aerospace Manufacturers have increasingly chosen to adapt a manufacturing style which borrows heavily from the Automotive industry. To facilitate this change in methodologies a system for locating robots has been developed which utilizes cameras for both locating and guidance of a mobile platform for a robot with drilling and fastening end effector.
Journal Article

High Accuracy Articulated Robots with CNC Control Systems

2013-09-17
2013-01-2292
A robotic arm manipulator is often an appealing method to position drills, bolt inserters, automated fiber placement heads, or other end effectors. In a standard robot the flexibility of the cantilevered arm as well as backlash in the drive system lead to large positioning errors. Previous work has greatly reduced this error through the use of secondary scales and a mathematical model of the robot deflection running on a CNC controller. Further research improved upon this model by accounting for linear deformation of each robot link regardless of position. The parameters describing these deformations are determined through a calibration routine and then used in real time to guide the end effector accurately to any reachable pose. In practice this method has been used to achieve total on-part positioning accuracy of better than +/− 0.25mm.
Journal Article

Increasing Machine Service Life of Large Envelope, High Acceleration AFP Machines

2013-09-17
2013-01-2297
Since Automated Fiber Placement (AFP) is used to manufacture twin-aisled commercial aircraft parts, extremely large envelope machines are often required and appropriate. Additionally, for very large parts, the average AFP course length may be on the order of one to two meters, and the part may have numerous contours. With courses of this length, a high acceleration machine is necessary to achieve fast laydown rates because the machine is frequently starting and stopping. Part contour also requires high acceleration machine axes to accurately maintain the AFP tow path at high feedrates. Large machines with high accelerations result in very large loads on bearings. Large loads and the long, high speed axis travels associated with large envelope machines make achieving a long service life difficult. Designing efficient, lightweight machine structures becomes critical to provide long machine service life.
Journal Article

Panel Assembly Line (PAL) for High Production Rates

2015-09-15
2015-01-2492
Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved. This allowed for easier communication and extended development time well into the project.
Journal Article

Body Join Drilling for One-Up-Assembly

2013-09-17
2013-01-2296
Over 1,200 large diameter holes must be drilled into the side-of-body join on a Boeing commercial aircraft's fuselage. The material stack-ups are multiple layers of primarily titanium and CFRP. Due to assembly constraints, the holes must be drilled for one-up-assembly (no disassembly for deburr). In order to improve productivity, reduce manual drilling processes and improve first-time hole quality, Boeing set out to automate the drilling process in their Side-of-Body join cell. Implementing an automated solution into existing assembly lines was complicated by the location of the target area, which is over 15 feet (4 meters) above the factory floor. The Side-of-Body Drilling machines (Figure 1) are capable of locating, drilling, measuring and fastening holes with less than 14 seconds devoted to non-drilling operations. Drilling capabilities provided for holes up to ¾″ in diameter through stacks over 4.5″ thick in a titanium/CFRP environment.
Journal Article

Enhanced Robotic Automated Fiber Placement with Accurate Robot Technology and Modular Fiber Placement Head

2013-09-17
2013-01-2290
The process of robotic automated fiber placement has been enhanced by combining the technologies of an accurate articulated robotic system with a modular Automated Fiber Placement (AFP) head. The accurate robotic system is comprised of an off-the-shelf 6-axis KUKA Titan KR1000L750 riding on a linear axis with an option for an additional part rotator axis. Each of the robot axes is enhanced with secondary position encoders. The modular fiber placement head features a robotic tool changer which allows quick-change of the process heads and an onboard creel. The quick-change fiber placement head and simplified tow path yields terrific process reliability and flexibility while allowing head preparations to occur offline. The system is controlled by a Siemens 840Dsl CNC which handles all process functions, robot motion, and executes software technologies developed by Electroimpact for superior positional accuracy including enhanced kinematics utilizing a high-order kinematic model.
Journal Article

Plate Cartridge Compact Flexible Automatic Feed System

2016-09-27
2016-01-2080
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
Journal Article

One Piece AFP Spar Manufacture

2011-10-18
2011-01-2592
Manufacturing C cross-sectional components with high aspect ratios out of carbon fiber reinforced composites is desirable by the aircraft industry. Modular AFP heads with short, fixed tow path have the fundamental performance characteristics required to successfully and productively automate the production of these part families. Aircraft parts in this family include wing spars, stringers, and fuselage frames.
Journal Article

Automated Floor Drilling Equipment for the 767

2014-09-16
2014-01-2270
A new portable floor drilling machine, the 767AFDE, has been designed with a focus on increased reach and speed, ease-of-use, and minimal weight. A 13-foot wide drilling span allows consolidation of 767 section 45 floor drilling into a single swath. A custom CNC interface simplifies machine operations and troubleshooting. Four servo-driven, air-cooled spindles allow high rate drilling through titanium and aluminum. An aluminum space frame optimized for high stiffness/weight ratio allows high speed operation while minimizing aircraft floor deflection. Bridge track tooling interfaces between the machine and the aircraft grid. A vacuum system, offline calibration plate, and transportation dolly complete the cell.
Technical Paper

New Jig Mounted Wing Panel Riveters, AERAC 2

2009-11-10
2009-01-3089
Electroimpact revisited a piece of automation history this year. In 1989, Electroimpact delivered its first ever Automated Electromagnetic Riveting and Assembly Cell or A.E.R.A.C. to Textron Aero Structures, now Vought Aircraft Industries. These machines produce upper wing panels for Airbus A330/340 aircraft. They were the precursor to the Low Voltage Electromagnetic Riveters or LVER's producing wing panels for Airbus single isle, A340 and A380 programs in Broughton, Wales, UK. In 2009, Electroimpact delivered two next generation AERAC machines to Vought Aircraft Industries. A significant design challenge was to hold the moving mass for the entire machine under 5220 kg without sacrificing performance of the LVER. These machines employ several new technologies to achieve this including Electroimpact's latest generation rivet injector, an integrated headstone load cell, and GE Fanuc's customer board.
Technical Paper

Flexible High Speed Riveting Machine

2003-09-08
2003-01-2948
Airbus UK was interested in a high-speed riveting machine cell that could automatically rivet over 30 different wing panels for a wide range of aircraft to fit in a limited floor space. Electroimpact was approached and proposed a Flexible, High Speed, Riveting Machine (HSRM). The resulting flexible riveting cell is 170 feet long and contains two flexible fixtures located end to end. Two fixtures allow manual work on one fixture while the machine is riveting on the second fixture. Each fixture can be quickly reconfigured to accommodate a broad range of Airbus panels. The system went into production on January 12, 2003 and has been extremely effective, riveting the first wing panel, a lower panel 1 for the A330-300 in only 5 days. This was one of the largest panels the cell was sized to accommodate. Anticipated process improvements will reduce the riveting time to just three days per panel.
Technical Paper

ONCE (ONe-sided Cell End effector) Robotic Drilling System

2002-09-30
2002-01-2626
The ONCE robotic drilling system utilizes a mass produced, high capacity industrial robot as the motion platform for an automated drilling, countersinking, and hole inspection machine for the skin to substructure join on the F/A-18E/F Super Hornet wing trailing edge flaps (TEF). Historically, robots have lacked the accuracy, payload capacity, and stiffness required for aerospace drilling applications. Recent improvements in positional accuracy and payload capacity, along with position and stiffness compensation, have enabled the robot to become an effective motion platform. Coupled with a servo-controlled multifunction end effector (MFEE), hole locations have successfully been placed within the specification's +/-0.060″ tolerance. The hole diameters and countersinks have proven to be very accurate, with countersink depth variation at 0.0025″ worst case.
Technical Paper

Coated Rivet Dies: A Dramatic Improvement in Rivet Interference Profile

2016-09-27
2016-01-2084
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the stringer side die dramatically reduces interference at the exit of the stringer, which in some instances resulted in a reduction of over 38%.
Technical Paper

Unique Material Handling and Automated Metrology Systems Provides Backbone of Accurate Final Assembly Line for Business Jet

2016-09-27
2016-01-2104
Figure 1 Global 7000 Business Jet. Photo credit: Robert Backus. The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line (FAL) to assemble their new business jets. Major challenges included devising a new material handling system, developing capable positioners and achieving accurate joins while accommodating two different aircraft variants (requiring a “flexible” system). An additional requirement was that the system be easily relocated to allow for future growth and reorganization. Crane based material handling presents certain collision and handover risks, and also present a logistics challenge as cranes can become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches.
Technical Paper

High-Accuracy Articulated Mobile Robots

2017-09-19
2017-01-2095
The advent of accuracy improvement methods in robotic arm manipulators have allowed these systems to penetrate applications previously reserved for larger, robustly supported machine architectures. A benefit of the relative reduced size of serial-link robotic systems is the potential for their mobilization throughout a manufacturing environment. However, the mobility of a system offers unique challenges in maintaining the high-accuracy requirement of many applications, particularly in aerospace manufacturing. Discussed herein are several aspects of mechanical design, control, and accuracy calibration required to retain accurate motion over large volumes when utilizing mobile articulated robotic systems. A number of mobile robot system architectures and their measured static accuracy performance are provided in support of the particular methods discussed.
Technical Paper

Automated Riveting of C-130J Aft Fuselage Panels

2017-09-19
2017-01-2075
Electroimpact and Lockheed Martin have developed an automated drilling and fastening system for C-130J aft fuselage panels. Numerous design and manufacturing challenges were addressed to incorporate the system into Lockheed Martin’s existing manufacturing paradigm and to adapt Electroimpact’s existing line of riveting machines for manufacture of these legacy aircraft parts. Challenges to automation included design of a very long yet sufficiently rigid and lightweight offset riveting anvil for fastening around deep circumferential frames, automated feeding of very short, “square” rivets in which the length is similar to the head diameter, creation of part programs and simulation models for legacy parts with no existing 3d manufacturing data, and crash protection for the aircraft part from machine collisions, given the uncertainties inherent in the model and the unique geometry of the aircraft parts.
Technical Paper

Process Speeds for Drilling and Reaming CFRP and CFRP/Metallic Stacks

2011-10-18
2011-01-2743
Drilling of carbon-fiber-reinforced plastic (CFRP) components in aircraft production presents many challenges. Factors including layup material, layup process, layup orientation, hole tolerance, surface finish, delamination limits, and inspection methods result in a wide range of process times. The purpose of the paper is to provide a framework to understanding the drilling process in CFRP and the resulting hole tolerance, surface finish and delamination. The paper will investigate drilled hole diameters from 3/16\mi (5 mm) up to 1\mi (25.4 mm) drilled thru CFRP/CFRP and CFRP/metallic stacks with automated drilling machines using single-sided clamping.
X