Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

New Catalyzed Cordierite Diesel Particulate Filters for Heavy Duty Engine Applications

2003-10-27
2003-01-3166
A family of cordierite DPF filters were developed and studied for their efficacy for catalyzed soot filter applications. In addition to porosity and median pore size of DPF filters, breadth of pore size distribution, microstructure, and pore connectivity have a profound influence not only in filter performance (pressure drop, catalyst coatability, and filtration efficiency) but also on mechanical and physical properties. Through filter material composition development, optimum values for the %porosity, median pore diameter, and breadth of the pore size distribution for minimizing pressure drop have been identified, leading to the development of a new family of high-porosity cordierite diesel particulate filters that possess a unique combination of high filtration efficiency, high strength, and very low clean and soot-loaded pressure drop in both the catalyzed and non-catalyzed states. By controlling the microstructure, the impact of the catalyst on pressure drop has been minimized.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

2002-10-21
2002-01-2889
Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed.
Technical Paper

Effects of Sulfur on Performance of Catalytic Aftertreatment Devices

1992-02-01
920557
In the effort to design reliable diesel engines which meet the strict US Federal Regulations for emissions, considerable progress has been made by engine manufacturers. Particulate emissions are now below 0.25 g/BHPh and after 1994 will be below 0.1 g/BHPh. Diesel fuel has a revised specification limit of 0.05% sulfur as a means to assist diesel engine manufacturers in complying with the 1994 standard. Diesel oxidation catalysts (DOC) have been chosen as another means. A DOC can efficiently oxidize soluble organic particulate matter (SOF) and gaseous hydrocarbons while easily oxidizing SO2 to SO3-the latter being a particulate and undesirable. Selective DOCs have been developed which maintain the activity for SOF and minimize the undesirable SO2 oxidation step. However, performance for gaseous hydrocarbons may be negatively affected.
Technical Paper

Save the Diesel Fueled Engine: A Clean Diesel Engine with Catalytic Aftertreatment - The Alternative to Alternate Fuels

1993-04-01
931182
Off-Highway diesel engines may benefit from exhaust emission control systems developed for on-highway vehicles. Both the diesel oxidation catalyst and the catalytic soot filter are being used to remove diesel smoke and odor. The advantages of both of these technologies are explained. NOx emissions control from diesel engines are now being addressed. Alternate fuels, such as methanol or natural gas, have been designed to replace diesel fuel as a measure to control NOx emissions. To avoid transfer to alternate fuels and permit continued use of diesel fuel in diesel engines, two approaches are being studied. These are the use of exhaust gas recirculation (EGR) and the development of a new technology called a lean NOx reduction catalyst. EGR, if successfully developed, probably will require the use of a catalytic soot filter. Lean NOx catalysts have been developed but still are not at a practical stage yet.
Technical Paper

In-Service Evaluation of Performance Enhancing Coatings for a Heavy Duty Diesel Truck Engine

1999-10-25
1999-01-3666
This paper presents the results of an on-road evaluation of in-cylinder ceramic thermal barrier coating GPX″-4M and turbocharger clearance control coating. Engelhard Corporation carried out the testing as a part of a pre-production product development and evaluation process. Contained in the paper are the results of a three-year long experiment conducted on an Engelhard's truck. Discussed in the paper are in-service performance and durability of Engelhard's coating. The experimental fuel usage data underwent substantial statistical treatment and analysis. In combination with the unique test conditions this allowed credible conclusions regarding the truck fuel economy. It was clearly demonstrated that the truck equipped with in-cylinder GPX coated components used 1.4% less fuel than a standard truck for the same amount of work performed over a 16-month period. This fuel saving is associated with the engine rebuild.
Technical Paper

Long-Term Durability of Passive Diesel Particulate Filters on Heavy-Duty Vehicles

2004-03-08
2004-01-0079
A multi-year technology validation program was completed in 2001 to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different diesel fleets operating in Southern California. The fuels used throughout the validation program were diesel fuels with less than 15-ppm sulfur content. Trucks and buses were retrofitted with two types of passive DPFs. Two rounds of emissions testing were performed to determine if there was any degradation in the emissions reduction. The results demonstrated robust emissions performance for each of the DPF technologies over a one-year period. Detailed descriptions of the overall program and results have been described in previous SAE publications [2, 3, 4, 5]. In 2002, a third round of emission testing was performed by NREL on a small subset of vehicles in the Ralphs Grocery Truck fleet that demonstrated continued robust emissions performance after two years of operation and over 220,000 miles.
Technical Paper

Catalyzed Soot Filters in Close Coupled Position for Passenger Vehicles

2006-04-03
2006-01-1091
Recently, catalyzed soot filters (CSF) for passenger vehicles have been introduced into the marketplace to comply with the European environmental requirements and future emission standards. The initial system consisted of one or two diesel oxidation catalysts (DOC) to meet the regulated HC and CO standards along with an under floor CSF to treat the particulate emissions. In order to meet the cold start requirements and to reduce system costs with a CSF only unit, converters are placed closer to the engine to minimize heat losses and more of the DOC functionality is integrated into the filter substrate. This work describes the development of such DOC-integrated CSF systems. One major challenge in the design of such systems is to ensure that there is sufficient catalyst functionality within the wall-flow substrate while maintaining an acceptable exhaust gas backpressure across the filter.
X