Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Numerical Simulations and Measurements of Mirror-Induced Wind Noise

2009-05-19
2009-01-2236
The high cost and competitive nature of automotive product development necessitates the search for less expensive and faster methods of predicting vehicle performance. Continual improvements in High Performance Computing (HPC) and new computational schemes allow for the digital evaluation of vehicle comfort parameters including wind noise. Recently, the commercially available Computational Fluid Dynamics (CFD) code PowerFlow, was evaluated for its accuracy in predicting wind noise generated by an external automotive tow mirror. This was accomplished by running simulations of several mirror configurations, choosing the quietest mirror based on the predicted performance, prototyping it, and finally, confirming the prediction with noise measurements taken in an aeroacoustic wind tunnel. Two testing methods, beam-forming and direct noise measurements, were employed to correlate the physical data with itself before correlating with simulation.
Journal Article

Accurate Fuel Economy Prediction via a Realistic Wind Averaged Drag Coefficient

2017-03-28
2017-01-1535
The ultimate goal for vehicle aerodynamicists is to develop vehicles that perform well on the road under real-world conditions. One of the most important metrics to evaluate vehicle performance is the drag coefficient. However, vehicle development today is performed mostly under controlled settings using wind tunnels and computational fluid dynamics (CFD) with artificially uniform upstream conditions, neglecting real-world effects due to road turbulence from wind and other vehicles. Thus, the drag coefficients computed with these methods might not be representative of the real performance of the car on the road. This might ultimately lead engineers to develop design solutions and aerodynamic devices which, while performing well in idealized conditions, do not perform well on the road. For this reason, it is important to assess the vehicle’s drag as seen in real-world environments. An effort in this direction is represented by using the wind-averaged drag.
Technical Paper

Simulation of Class 8 Truck Cooling System: Comparison to Experiment under Different Engine Operation Conditions

2007-10-29
2007-01-4111
More stringent heavy vehicle emissions legislation demands considerably higher performance for engine cooling systems. This paper presents a study of cooling airflow for a Freightliner Class 8 truck. The predicted radiator coolant inlet and charge-air-cooler outlet temperatures are in very good agreement with the measured data. The under hood flow behavior is described and potential areas of improvement leading to better cooling airflow performance are highlighted. The airflow simulation approach is based on the Lattice-Boltzmann Method (LBM) and is described in detail. It is shown that the presented simulation approach can provide accurate predictions of cooling airflow and coolant temperature across different fan speeds.
Technical Paper

Under-hood Thermal Simulation of a Class 8 Truck

2007-10-30
2007-01-4280
A validation study was performed comparing the simulation results of the Lattice-Boltzmann Equation (LBE) based flow solver, PowerFLOW®, to cooling cell measurements conducted at Volvo Trucks North America (VTNA). The experimental conditions were reproduced in the simulations including dynamometer cell geometry, fully detailed under-hood, and external tractor geometry. Interactions between the air flow and heat exchangers were modeled through a coupled simulation with the 1D-tool, PowerCOOL™, to solve for engine coolant and charge air temperatures. Predicted temperatures at the entry and exit plane of the radiator and charge-air-cooler were compared to thermocouple measurements. In addition, a detailed flow analysis was performed to highlight regions of fan shroud loss and cooling airflow recirculation. This information was then used to improve cooling performance in a knowledge-based incremental design process.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Simulation of Cooling Airflow under Different Driving Conditions

2007-04-16
2007-01-0766
Presented are simulations of cooling airflow and external aerodynamics over Land Rover LR3 and Ford Mondeo cars under several driving conditions. The simulations include details of the external flow field together with the flow in the under-hood and underbody areas. Shown is the comparison between the predicted and measured coolant inlet temperature in the radiator, drag and lift coefficients, temperature distribution on the radiator front face, and wake total pressure distribution. Very good agreement is observed. In addition, shown is the complex evolution of the temperature field in the idle case with strong under-hood recirculation. It is shown that the presented Lattice-Boltzmann Method based approach can provide accurate predictions of both cooling airflow and external aerodynamics.
Technical Paper

Aerodynamic Simulation of a Standalone Rotating Treaded Tire

2017-03-28
2017-01-1551
The aerodynamics of a rotating tire can contribute up to a third of the overall aerodynamic force on the vehicle. The flow around a rotating tire is very complex and is often affected by smallest tire features. Accurate prediction of vehicle aerodynamics therefore requires modeling of tire rotation including all geometry details. Increased simulation accuracy is motivated by the needs emanating from stricter new regulations. For example, the upcoming Worldwide harmonized Light vehicles Test Procedures (WLTP) will place more emphasis on vehicle performance at higher speeds. The reason for this is to bring the certified vehicle characteristics closer to the real-world performance. In addition, WLTP will require reporting of CO2 emissions for all vehicle derivatives, including all possible wheel and tire variants. Since the number of possible derivatives can run into the hundreds for most models, their evaluation in wind tunnels might not be practically possible.
Technical Paper

Simulation-Driven Process to Evaluate Vehicle Integration Aspects in Brake Thermal Design

2017-05-24
2017-36-0011
Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
Technical Paper

Engine Room Lay-out Study for Fuel Efficiency and Thermal Performance

2012-04-16
2012-01-0639
Systematic numerical simulations were performed for the improvement of fuel efficiency and thermal performance of a compact size passenger vehicle. Both aerodynamic and thermal aspects were considered concurrently. For the sake of systematic evaluation, our study was conducted employing various design changes in multiple steps: 1) analysis of the baseline design; 2) elimination of the engine room components; 3) modification of the engine room component layout; 4) modification of the aerodynamic components (such as under body cover and cooling ducts). The vehicle performance characteristics corresponding to different design options were analyzed in terms of aerodynamic coefficient, engine coolant temperature, and surface temperatures of thermally critical components such as battery and exhaust manifold. Finally optimal design modification solutions for better vehicle performance were proposed.
Technical Paper

Cooling Airflow Simulation for Passenger Cars using Detailed Underhood Geometry

2006-10-31
2006-01-3478
Air flow in the underhood area is the primary source of engine cooling. A quick look at the vehicle underhood reveals exceptionally complex geometry. In addition to the engine, there are fans, radiator, condenser, other heat exchangers and components. The air flow needs to have adequate access to all relevant parts that require cooling. Due to complex geometry, the task to ensure sufficient air cooling is not a simple one. The air flow entering from the front grille is affected by many components on its path through the underhood. Even small geometry details affect the flow direction and can easily cause recirculation regions which reduce the cooling efficiency. Therefore, air cooling flow analysis requires detailed treatment of the underhood geometry and at the same time accurate air flow modeling. Recent advances in the lattice-Boltzmann equation (LBE) modeling are allowing both.
Technical Paper

The Aerodynamic Development of a New Dongfeng Heavy Truck

2015-09-29
2015-01-2886
The development of a new Dongfeng Heavy truck had very strict targets for fuel consumption. As the aerodynamic drag plays a crucial role for the fuel consumption, a low drag value had to be achieved. It was therefore essential to include evaluation and optimization of the aerodynamics in the development process. Because wind tunnel facilities were not available, the complete aerodynamics development was based on digital simulation. The major portion of the aerodynamic optimization was carried out during the styling phase where mirrors, sun visor, front bumper and aero devices were optimized for drag reduction. For optimizing corner vanes and mud guards, self-soiling from the wheel spray was included in the analysis. The aero results did also show that cooling air flow rates are sufficiently high to ensure proper cooling. During the detailed engineering phase an increase of the drag above the target required further optimization work to finally reach the target.
Technical Paper

Application of Real-World Wind Conditions for Assessing Aerodynamic Drag for On-Road Range Prediction

2015-04-14
2015-01-1551
Aerodynamic evaluation of vehicles using static yaw angle changes in wind tunnel testing and numerical simulation has been used as standard practice for evaluating vehicle performance under a range of wind conditions. However, this approach does not consider dynamic wind effects coming from changing wind conditions, passing other vehicles and roadside obstacles, and transient non-uniform wind conditions coming from environmental turbulence. In previous work by the authors, computational fluid dynamics (CFD) simulation methodology for considering dynamic wind conditions and on-road turbulence was demonstrated, showing the important effects of the wind conditions on the vehicle aerodynamics. The technique allows the vehicle to be tested under a range of transient gust conditions, also accounting for wind turbulence coming from upstream vehicles and natural environmental wind fluctuations.
X