Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-11-15
This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.
Journal Article

Extending Tensile Curves beyond Uniform Elongation Using Digital Image Correlation: Capability Analysis

2010-04-12
2010-01-0981
A uniaxial stress-strain curve obtained from a conventional tensile test is only valid up to the point of uniform elongation, beyond which a diffuse neck begins to develop, followed by localized necking and eventual fracture. However Finite Element Analysis for sheet metal forming requires an effective stress-strain curve that extends well beyond the diffuse necking point. Such an extension is usually accomplished by analytical curve fitting and extrapolation. Recent advancement in Digital Image Correlation (DIC) techniques allows direct measurement of full-range stress-strain curves by continuously analyzing the deformation within the diffuse neck zone until the material ruptures. However the stress-strain curve obtained this way is still approximate in nature. Its accuracy depends on the specimen size, the gage size for analysis, and the material response itself.
Journal Article

Deformation Analysis of Incremental Sheet Forming

2010-04-12
2010-01-0991
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
Journal Article

Experimental Characterization and Modeling of Dry Dual Clutch Wear

2014-04-01
2014-01-1773
Clutch wear is dominantly manifested as the reduction of friction plate thickness. For dry dual clutch with position-controlled electromechanical actuators this affects the accuracy of normal force control because of the increased clutch clearance. In order to compensate for the wear, dry dual clutch is equipped with wear compensation mechanism. The paper presents results of experimental characterization and mathematical modeling of two clutch wear related effects. The first one is the decrease of clutch friction plate thickness (i.e. increase of clutch clearance) which is described using friction material wear rate experimentally characterized using a pin-on-disc type tribometer test rig. The second wear related effect, namely the influence of the clutch wear compensation mechanism activation at various stages of clutch wear on main clutch characteristics, was experimentally characterized using a clutch test rig which incorporates entire clutch with related bell housing.
Journal Article

Finite Element Modeling of Dissimilar Metal Self-piercing Riveting Process

2014-04-01
2014-01-1982
In present paper, the process of joining aluminum alloy 6111T4 and steel HSLA340 sheets by self-piercing riveting (SPR) is studied. The rivet material properties were obtained by inverse modeling approach. Element erosion technique was adopted in the LS-DYNA/explicit analysis for the separation of upper sheet before the rivet penetrates into lower sheet. Maximum shear strain criterion was implemented for material failure after comparing several classic fracture criteria. LS-DYNA/implicit was used for springback analysis following the explicit riveting simulation. Large compressive residual stress was observed near frequent fatigue crack initiation sites, both around vicinity of middle inner wall of rivet shank and upper 6111T4 sheet.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Aluminum and Copper Sheets

2014-04-01
2014-01-1986
Failure mode and fatigue behavior of dissimilar laser welds in lap-shear specimens of aluminum and copper sheets are investigated. Quasi-static tests and fatigue tests of laser-welded lap-shear specimens under different load ranges with the load ratio of 0.1 were conducted. Optical micrographs of the welds after the tests were examined to understand the failure modes of the specimens. For the specimens tested under quasi-static loading conditions, the micrograph indicates that the specimen failed through the fusion zone of the aluminum sheet. For the specimens tested under cyclic loading conditions, two types of failure modes were observed under different load ranges. One failure mode has a kinked crack initiating from the interfacial surface between the aluminum and copper sheets and growing into the aluminum fusion zone at an angle close to 90°.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

An Investigation of the Effects of Cast Skin on the Mechanical Properties of an AM60 Die-Cast Magnesium Alloy

2015-04-14
2015-01-0510
Magnesium die-cast alloys are known to have a layered microstructure composed of: (1) An outer skin layer characterized by a refined microstructure that is relatively defect-free; and (2) A “core” (interior) layer with a coarser microstructure having a higher concentration of features such as porosity and externally solidified grains (ESGs). Because of the difference in microstructural features, it has been long suggested that removal of the surface layer by machining could result in reduced mechanical properties in tested tensile samples. To examine the influence of the skin layer on the mechanical properties, a series of round tensile bars of varying diameters were die-cast in a specially-designed mold using the AM60 Mg alloy. A select number of the samples were machined to different final diameters. Subsequently, all of the samples (as-cast as well as machined) were tested in tension.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

CAE Modeling Static and Fatigue Performance of Short Glass Fiber Reinforced Polypropylene Coupons and Components

2020-04-14
2020-01-1309
One approach of reducing weight of vehicles is using composite materials, and short glass fiber reinforced polypropylene is one of most popular composite materials. To more accurately predict durability performance of structures made of this kind of composite material, static and fatigue performance of coupons and components made of a short glass fiber reinforced polypropylene has been physically studied. CAE simulations have been conducted accordingly. This paper described details of CAE model setup, procedures, analysis results and correlations to test results for static, fiber orientation flow and fatigue of coupons and a battery tray component. The material configurations include fiber orientations (0, 20 and 90 degrees), and mean stress effect (R = -1.0, -0.5, -0.2, 0.1 and 0.4). The battery tray component samples experience block cycle loading with loading ratio of R = -0.3 and 0.3. The CAE predictions have reasonable correlations to the test results.
Technical Paper

Development of a Computational Algorithm for Estimation of Lead Acid Battery Life

2020-04-14
2020-01-1391
The performance and durability of the lead acid battery is highly dependent on the internal battery temperature. The changes in internal battery temperatures are caused by several factors including internal heat generation and external heat transfer from the vehicle under-hood environment. Internal heat generation depends on the battery charging strategy and electric loading. External heat transfer effects are caused by customer duty cycle, vehicle under-hood components and under-hood ambient air. During soak conditions, the ambient temperature can have significant effect on battery temperature after a long drive for example. Therefore, the temperature rise in a lead-acid battery must be controlled to improve its performance and durability. In this paper a thermal model for lead-acid battery is developed which integrates both internal and external factors along with customer duty cycle to predict battery temperature at various driving conditions.
Technical Paper

Integration of Sensitivity Analysis and Design for Six Sigma (DFSS) Methodology into Transient Thermal Analysis

2020-04-14
2020-01-1389
In this paper we present an integrated approach which combines analysis of the effect of simultaneous variations in model input parameters on component or system temperatures. The sensitivity analysis can be conducted by varying model input parameters using specific values that may be of interest to the user. The alternative approach is to use a structured set of parameters generated in the form of a DFSS DOE matrix. The matrix represents a combination of simulation conditions which combine the control factors (CF) and noise factors. CF’s are the design parameters that the engineer can modify to achieve a robust design. Noise factors include parameters that are outside the control of the design engineer. In automotive thermal management, noise factors include changes in ambient temperature, exhaust gas temperatures or aging of exhaust system or heat shields for example.
Technical Paper

Automotive Wheel Metamodeling Using Response Surface Methodology (RSM) Technique

2020-04-14
2020-01-1234
Computational cost plays a major role in the performance of scientific and engineering simulation. This in turn makes the virtual validation process complex and time consuming. In the simulation process, achievement of appropriate level of accurate models as close as physical testing is the root for increase in the computational cost. During preliminary phase of product development, it is difficult to identify the appropriate size, shape and other parameters of the component and they will undergo several modifications in concept and other stages. An approximation model called metamodel or surrogate model has developed for reducing these effects and minimizing the computational cost. Metamodel can be used in the place of actual simulation models. Metamodel can be an algorithm or a mathematical relation representing the relations between input and output parameters.
Journal Article

Automobile Powertrain Sound Quality Development Using a Design for Six Sigma (DFSS) Approach

2015-06-15
2015-01-2336
Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
Journal Article

Comparison of Computational Simulation of Automotive Spinning Wheel Flow Field with Full Width Moving Belt Wind Tunnel Results

2015-04-14
2015-01-1556
One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
Journal Article

Review and Assessment of Frequency-Based Fatigue Damage Models

2016-04-05
2016-01-0369
Several popular frequency-based fatigue damage models (Wirsching and Light, Ortiz and Chen, Larsen and Lutes, Benascuitti and Tovo, Benascuitti and Tovo with α.75, Dirlik, Zhao and Baker, and Lalanne) are reviewed and assessed. Seventy power spectrum densities with varied amplitude, shape, and irregularity factors from Dirlik’s dissertation are used to study the accuracies of these methods. Recommendations on how to set up the inverse fast Fourier transform to synthesize load data and obtain accurate rainflow cycle counts are given. Since Dirlik’s method is the most commonly used one in industry, a comprehensive investigation of parameter setups for Dirlik’s method is presented. The mean error and standard deviation of the error between the frequency-based model and the rainflow cycle counting method was computed for fatigue slope exponent m ranging from 3 to 12.
Journal Article

Degradation Analysis of Flexible Film Cables in an Automotive Environment

2017-03-28
2017-01-0317
Automobiles have a high degree of mechanical and electrical complexity. However, product complexity has the accompanying effect of requiring high levels of design and process oversight. The net result is a product creation process which is prone to creating failures. These failures typically have their origin in an overall lack of complete understanding of the system in terms of materials, geometries and energy flows. Despite all of the engineering intentions, failures are inevitable, common, and must be dealt with accordingly. In the worst case, if a failure manifests itself into an observable failure the customer may have a negative experience. Therefore, it is imperative that design engineers, suppliers along with reliability professionals be able to assess the design risk. One approach to assess risk is the use of degradation analysis. Degradation analysis often provides more information than failure time data for assessing reliability and predicting the remnant life of a system.
Journal Article

A Stress-Based Non-Proportionality Parameter for Considering the Resistance of Slip Systems of Shear Failure Mode Materials

2016-04-11
2016-01-9081
Multiaxial loading on mechanical products is very common in the automotive industry, and how to design and analyze these products for durability becomes an important, urgent task for the engineering community. Due to the complex nature of the fatigue damage mechanism for a product under multiaxial state of stresses/strains which are dependent upon the modes of loading, materials, and life, modeling this behavior has always been a challenging task for fatigue scientists and engineers around the world. As a result, many multiaxial fatigue theories have been developed. Among all the theories, an existing equivalent stress theory is considered for use for the automotive components that are typically designed to prevent Case B cracks in the high cycle fatigue regime.
Technical Paper

A Robust Cargo Box Structure Development Using DFSS Methodology

2020-04-14
2020-01-0601
A cargo box is a key structure in a pickup truck which is used to hold various items. Therefore, a cargo box must be durable and robust under different ballast conditions when subjected to road load inputs. This paper discusses a Design for Six Sigma (DFSS) approach to improve the durability of cargo box panel in its early development phase. Traditional methods and best practices resulted in multiple iterations without an obvious solution. Hence, DFSS tools were proposed to find a robust and optimum solution. Key control factors/design parameters were identified, and L18 Orthogonal Array was chosen to optimize design using CAE tools. The optimum design selected was the one with the minimum stress level and the least stress variation. This design was confirmed to have significant improvement and robustness compared to the initial design. DFSS identified load paths which helped teams finally come up with integrated shear plate to resolve the durability concern.
X