Refine Your Search

Topic

Search Results

Journal Article

Aspects of NVH Integration in Hybrid Vehicles

2009-05-19
2009-01-2085
NVH refinement is an important aspect of the powertrain development and vehicle integration process. The depletion of fossil-based fuels and increase in price of gasoline have prompted most vehicle manufacturers to embrace propulsion technologies with varying degrees and types of hybridization. Many different hybrid vehicle systems are either on the market, or under development, even up to all-electric vehicles. Each hybrid vehicle configuration brings unique NVH challenges that result from a variety of sources. This paper begins with an introductory discussion of hybrid propulsion technologies and associated unique vehicle NVH challenges inherent in the operation of such hybrid vehicles. Following this, the paper outlines a two-dimensional landscape of typical customer vehicle maneuvers mapped against hybrid electric vehicle (HEV) operational modes.
Technical Paper

Aspects of Driveline Integration for Optimized Vehicle NVH Characteristics

2007-05-15
2007-01-2246
Customer requirements for quiet and more comfortable vehicles have steadily increased. Requirements for lightweight vehicle designs and the need for more fuel efficient engines are often contradictory to the customer expectations for NVH refinement. The driveline can be a significant source of NVH issues in the vehicle. The increasing complexity of modern driveline systems as well as the existence of several variants in the driveline architecture (front wheel, rear wheel and four-wheel/all-wheel drive, automatic-, manual-, automatic-shifted manual transmission, etc.) can make the driveline integration task very challenging. Due to the multitude of driveline components and potential driveline excitations sources, several driveline-related noise and vibration problems within different frequency ranges have to be understood and controlled to ensure a well refined vehicle.
Technical Paper

Aspects of Powertrain Noise with Special Emphasis on Impulsive Noise

2007-05-15
2007-01-2411
NVH refinement is an important aspect of the powertrain development process. Powertrain NVH refinement is influenced by overall sound levels as well as sound quality. The sound quality and hence the level of powertrain NVH refinement can be negatively affected by the presence of excessive impulsive noise. This paper describes a process used to develop an understanding of impulsive powertrain noise. The paper begins with an introductory discussion of various sources of impulsive noise in an automotive powertrain. Following this, the paper outlines a process for identifying the source of the impulsive powertrain noise using examples from case studies. The remainder of the paper focuses on certain examples of impulsive noise such as Diesel knocking noise, injector ticking, impulsive cranktrain noise, and gear rattle. For these examples, the development of key objective metrics, optimization measures, and improvement potential are examined.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

The Effect of Cranktrain Design on Powertrain NVH

1997-05-20
971994
In the last few years the requirement to optimize powertrain noise and vibration has increased significantly. This was caused by the demand to fulfill the vehicle's exterior noise legislative limits in Europe, and by increased customer awareness for high ride comfort. Much effort concentrated on the engine and the powertrain as prime sources of noise and vibration in a vehicle. The cranktrain with its moving components is a significant source of noise and vibration excitation within the engine. This paper describes results of investigations to evaluate various design alternatives in respect to NVH. The influences of crankshaft material, of balancing rate and of secondary shaking forces are discussed, with the aim to evaluate these various design options.
Technical Paper

Borderline Design of Crankshafts Based on Hybrid Simulation Technology

2009-06-15
2009-01-1918
This paper introduces different modeling approaches of crankshafts, compares the refinement levels and discusses the difference between the results of the crankshaft durability calculation methodologies. A V6 crankshaft is considered for the comparison of the refinement levels depending on the deviation between the signals such as main bearing forces and deflection angle. Although a good correlation is observed between the results in low speed range, the deviation is evident through the mid to high speed ranges. The deviation amplitude differs depending on the signal being observed and model being used. An inline 4 crankshaft is considered for the comparison of the durability results. The analysis results show that the durability potential is underestimated with a classical crankshaft calculation approach which leads to a limitation of maximum speed of 5500 rpm.
Technical Paper

Powertrain-related vehicle sound development

2000-06-12
2000-05-0301
This paper reflects an efficient and comprehensive approach for vehicle sound optimization integrated into the entire development process. It shows the benefits of early consideration of typical vehicle NVH features and of intensive interaction of P/T and vehicle responsibilities. The process presented here considers the typical restriction that acoustically representative prototypes of engines and vehicles are not available simultaneously at the early development phase. For process optimization at this stage, a method for vehicle interior noise estimation is developed, which bases on measurements from the P/T test bench only, while the vehicle transfer behavior for airborne and structure-borne noise is assumed to be similar to a favorable existing vehicle. This method enables to start with the pre- optimization of the pure P/T and its components by focusing on such approaches which are mainly relevant for the vehicle interior noise.
Technical Paper

Interior Noise Simulation for Improved Vehicle Sound

2001-04-30
2001-01-1539
In the recent past, interior noise quality has developed into a decisive aspect for the evaluation of overall vehicle quality. At most operating points, the dominating interior noise share is generated by the powertrain. Interior noise simulation is a new tool for upgrading interior noise. Based on measurements of air- and structure-borne noise excitations caused by the powertrain, the interior noise shares are determined by applying the properties of the transfer paths. By superimposing the individual interior noise shares, the overall interior noise can be predicted. Well before the engine is operated in the vehicle for the first time, annoying interior noise shares, their causes and their transfer paths can be identified by subjective and objective analysis. This enables the engineer to focus on vital optimization measures as to excitations occurring at the engine as well as to transfer paths in the vehicle.
Technical Paper

Comprehensive Combustion Noise Optimization

2001-04-30
2001-01-1510
Combustion noise plays a considerable role in the acoustic tuning of gasoline and diesel engines. Even though noise levels of modern diesel engines reach extremely low values, they are still higher than those of conventional gasoline engines. On the other hand, new combustion procedures designed to improve fuel consumption lead to elevated combustion noise excitations as in case of today's direct injecting gasoline engines whose vibration excitation and airborne noise emissions are slightly increased during stratified operation. The partly conflicting development goals resulting from this can only be realized by integrating the NVH specialists' expertise into every development step from concept to SOP.
Technical Paper

Analysis of Transient Noise Behavior of a Truck Diesel Engine

2001-04-30
2001-01-1566
Based on NVH tests conducted on a heavy-duty turbocharged DI diesel engine, noise relevant differences between steady-state and transient operating condition were investigated. A vehicle drive-by test simulating the effects of vehicle mass and inertia was performed, followed by transient NVH measurements in a semi-anechoic test cell. Steady-state noise was exceeded by 5 dBA during transient operation due to broadband increase of noise excitation combined with structure resonance amplification. Transient noise results mainly from “harsher” combustion as a consequence of enlarged ignition delay indicated by significant increase in maximum cylinder pressure gradient. Variation of geartrain excitation and combustion excitation revealed that geartrain noise is of minor importance in this context.
Technical Paper

Sound Design Under the Aspects of Musical Harmonic Theory

2003-05-05
2003-01-1508
Sound design of vehicle interior and exterior noise is becoming more and more important for the customer's impression of product quality. To accommodate for this, FEV has developed a sound design method that utilizes FEV VINS (Vehicle Interior Noise Simulation) to design series production relevant hardware modifications. Within a new internal research program, FEV's NVH specialists investigated the theory of musical harmonics and compared the results with engine acoustics in an effort to establish if and what mechanical acoustics can learn from musical harmonics. Looking at engine acoustics from the point of view of musical harmonic theory, the specific combination of half and integer engine orders in particular offers the possibility of creating harmonious noise content. Furthermore, we can estimate how the typical subjective evaluations derive from the integer and half engine orders that occur depending on the engine concept.
Technical Paper

Strategies to Improve SI-Engine Performance by Means of Variable Intake Lift, Timing and Duration

1992-02-01
920449
This paper reports the results of theoretical and experimental investigations in the field of variable intake - valve control of spark-ignition engines. Different degrees of freedom for a variable intake profile such as variable intake opening and closing events, variable valve lift, as well as the deactivation of one of the intake valves per cylinder of a multi-valve engine are considered and evaluated concerning their potential to reduce pumping losses, to support mixture formation, and to improve combustion. The investigations show that additional efforts are necessary to convert the potential of minimized pumping losses due to unthrottled SI-engine load control into reduced fuel consumption and good driveability. Increased gas velocities during intake for low engine speed and load and adjusted residual-gas fractions according to the different operating conditions prove to be very efficient parameters to improve engine performance under unthrottled conditions.
Technical Paper

Driveline Boom Interior Noise Prediction Based on Multi Body Simulation

2011-05-17
2011-01-1556
It is important to develop powertrain NVH characteristics with the goal of ultimately influencing/improving the in-vehicle NVH behavior since this is what matters to the end customer. One development tool called dB(VINS) based on a process called Vehicle Interior Noise Simulation (VINS) is used for determining interior vehicle noise based on powertrain level measurements (mount vibration and radiated noise) in combination with standardized vehicle transfer functions. Although this method is not intended to replace a complete transfer path analysis and does not take any vehicle specific sensitivity into account, it allows for powertrain-induced interior vehicle noise assessments without having an actual test vehicle available. Such a technique allows for vehicle centric powertrain NVH development right from an early vehicle development stage.
Technical Paper

Sound Character of Electric Vehicles

2011-05-17
2011-01-1728
The electrification of vehicle propulsion has caused a significant change in many areas including the world of vehicle acoustics. Comments from the media currently range from “silently hums the future” to “electric car roars with V8 sound”. Decades of experience in designing brand-specific vehicle sound based on noise and vibration generated by combustion engines cannot be simply transferred to the upcoming vehicles driven purely by electric powertrains. Although electric vehicles are almost always considerably quieter than those powered by internal combustion engines, the interior noise is characterized by high-frequency noise components which can be subjectively perceived as annoying and unpleasant. Moreover, such disturbing noise is no longer masked by combustion engine noise. Fundamental questions regarding the sound design of electric vehicles have yet to be answered: it remains unclear what exactly the interior noise of an electric vehicle should sound like.
Technical Paper

Plain Bearings in High Performance Engines - Simulation Tools for Advanced Investigations and Layouts

2006-04-03
2006-01-1102
The loads on the plain bearings of modern combustion engines increase continuously. Reasons for this development are increasing engine speeds on gasoline engines, growing cylinder peak pressures at diesel engines and both combined with the steady trend toward light weight concepts. The still significantly increasing power output of modern engines has to be combined with actions reducing the engine friction losses, as for example smaller bearing dimensions or lower engine oil viscosities. At the same time the comfort, lifetime and engine service interval targets are aggravating boundary conditions. This development leads to the point, where former approaches toward plain bearing layout reach their systematic limitations - a first indication are bearing failures, which occur even though all conventional layout criteria's are fulfilled. Further effects need to be considered to simulate the behavior of the plain bearing under the boundary conditions of a fired combustion engine.
Technical Paper

A New Technique for Measuring the Deformation of Cylinder Bores During Engine Operation

1995-02-01
950540
The distortion of the cylinder liners of internal combustion engines has a significant affect on engine operation. It can affect the lubrication oil consumption, the blow-by, the wear behaviour and due to the friction, the fuel consumption. In order to achieve future requirements regarding exhaust emissions and fuel consumption, the requirements for low cylinder distortion engine blocks will play a significant role. Hence, a new technique to determine liner distortion during fired engine operation was developed.
Technical Paper

NVH Optimization of an In-Line 4-Cylinder Powertrain

1995-05-01
951294
The NVH optimization is a key issue for the development of future powertrains. This includes the radiated noise in terms of noise level and sound quality as well as the structure-borne noise excitation via the engine mounts. Experience shows that there are generally no single noise relevant components on modern powertrains which dominate the NVH behaviour. In contrast, a good NVH performance can only be achieved if the optimization process includes every single component and excitation. Only the combination of these optimized designs can lead to a first-class powertrain NVH. Within this paper the NVH optimization process of an existing 4-cylinder in-line spark-ignition powertrain is described. Examples for positive NVH designs are presented and their effect on the NVH behaviour are explained. Combining all positive NVH features into the engine resulted in a noise reduction of 3-5 dBA without any negative effect on fuel economy and performance.
Technical Paper

Development of Modern Engine Lubrication Systems

1997-02-24
970922
Modern passenger car engines are designed to operate at increasingly higher rated engine speeds with more internal parts (multi-valve engines) requiring lubrication. The paper presents results of research and development activities to reduce the actual feed rate of the oil consumers to their real requirements depending on the most significant influence parameters. Based on these results an optimization strategy is presented which combines CAE tools with data from experimental work. In the conclusion of the paper recommendations are summarized to show the optimization potential of actual lubrication and ventilation systems concerning design. power input respectively oil consumption.
Technical Paper

A New 2.3L DOHC Engine with Balance Shaft Housing - Steps of Refinement and Optimization

1997-02-24
970921
Ford introduced a new in-line 4-cylinder 2.3L DOHC 16-valve engine in its European D-class Scorpio vehicle. The engine is based on the proven 2.0L-DOHC engine with 8 or 16 valves. The new engine replaces the 2.0L DOHC 8-valve version. Primary focus of the development of this new 2.3L engine was on the noise and vibration improvement, both for the engine and for the vehicle interior noise. One measure to achieve this target was the application of balance shafts. In this paper, the development of the new engine will be described from the design stage to the production version. It will focus on the design of the balance shaft housing and all relevant engine NVH features. The various stages of the design and detailed optimization are explained. The NVH prediction by CAE methods is verified with experimental results. The influence of optimized components like the oil pan, front cover and the chain tensioner on the noise behavior will be discussed.
X