Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Journal Article

Experimental Characterization and Modeling of Dry Dual Clutch Wear

2014-04-01
2014-01-1773
Clutch wear is dominantly manifested as the reduction of friction plate thickness. For dry dual clutch with position-controlled electromechanical actuators this affects the accuracy of normal force control because of the increased clutch clearance. In order to compensate for the wear, dry dual clutch is equipped with wear compensation mechanism. The paper presents results of experimental characterization and mathematical modeling of two clutch wear related effects. The first one is the decrease of clutch friction plate thickness (i.e. increase of clutch clearance) which is described using friction material wear rate experimentally characterized using a pin-on-disc type tribometer test rig. The second wear related effect, namely the influence of the clutch wear compensation mechanism activation at various stages of clutch wear on main clutch characteristics, was experimentally characterized using a clutch test rig which incorporates entire clutch with related bell housing.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Journal Article

Design of Test Rigs for a Dry Dual Clutch and its Electromechanical Actuator

2012-04-16
2012-01-0807
Dual Clutch Transmissions with dry electromechanically actuated clutches have emerged on the market recently. In order to provide their favorable operation in terms of the clutch torque control, it is very important to have a good knowledge on the system behavior related to the actuator dynamics, the dry friction coefficient behavior, and the thermal dynamics. This paper describes two test rigs developed to support the research work on a dry dual clutch with a lever-based electromechanical actuation system. The first test rig (actuation system test rig) provides a basis for a comprehensive multi-step identification of the actuation system parameters and characterization of the overall system behavior. This test rig includes a modified dual clutch assembly including a built-in sensor for the purpose of direct normal force measurement.
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
Journal Article

Methodology for Assessment of Alternative Hybrid Electric Vehicle Powertrain System Architectures

2012-04-16
2012-01-1010
Hybrid electric vehicle (HEV) systems offer significant improvements in vehicle fuel economy and reductions in vehicle generated greenhouse gas emissions. The widely accepted power-split HEV system configuration couples together an internal combustion engine with two electric machines (a motor and a generator) through a planetary gear set. This paper describes a methodology for analysis and optimization of alternative HEV power-split configurations defined by alternative connections between power sources and transaxle. The alternative configurations are identified by a matrix of kinematic equations for connected power sources. Based on the universal kinematic matrix, a generic method for automatically formulating dynamic models is developed. Screening and optimization of alternative configurations involves verification of a set of design requirements which reflect: vehicle continuous operation, e.g. grade test; and vehicle dynamic operation such as acceleration and drivability.
Journal Article

Considerations in HMI Design of a Reverse Braking Assist (RBA) System

2013-04-08
2013-01-0720
The Reverse Braking Assist (RBA) feature is designed to automatically activate full braking in a backing vehicle. When this feature activates, a backing vehicle is suddenly stopped or may slide to a stop. During this process, an understanding of the driver's behavior may be useful in the design of an appropriate human-machine-interface (HMI) for the RBA. Several experimental studies were done to examine driver behavior in response to an unexpected and automatic braking event while backing [1]. Two of these studies are reported in this paper. A 7-passenger Crossover Utility Vehicle was fitted with a rear-view camera, a center-stack mounted LCD screen, and ancillary recording devices. In the first study, an object was suddenly placed in the path of a backing vehicle. The backing vehicle came to a sudden and complete stop. The visual image of the backing path on the LCD prominently showed that an obstacle was present in the backing path of the vehicle.
Journal Article

Experimental Characterization and Modeling of Dry Dual Clutch Thermal Expansion Effects

2013-04-08
2013-01-0818
Thermal expansion of a clutch pack with position-controlled actuation can affect the accuracy of clutch normal torque control, because it causes an increase of the clutch normal force for the given actuator position. The paper presents an experimental characterization and mathematical modeling of the dry dual clutch thermal expansion effects. The experimental data have been collected by using a clutch/transmission test rig. The acquired data point to two separate, mutually opposite thermal expansion effects. The first effect relates to increase of the clutch clearance with temperature growth, while the second one includes decrease of press plate and engagement bearing positions for a given clutch torque and a rising temperature (i.e. the clutch torque rises with temperature growth and a constant actuator position). In order to explain and describe these two effects, a geometry analysis of the clutch, focused on thermal expansion, is carried out.
Journal Article

Effects of Fuel Octane Rating and Ethanol Content on Knock, Fuel Economy, and CO2 for a Turbocharged DI Engine

2014-04-01
2014-01-1228
Engine dynamometer testing was performed comparing fuels having different octane ratings and ethanol content in a Ford 3.5L direct injection turbocharged (EcoBoost) engine at three compression ratios (CRs). The fuels included midlevel ethanol “splash blend” and “octane-matched blend” fuels, E10-98RON (U.S. premium), and E85-108RON. For the splash blends, denatured ethanol was added to E10-91RON, which resulted in E20-96RON and E30-101 RON. For the octane-matched blends, gasoline blendstocks were formulated to maintain constant RON and MON for E10, E20, and E30. The match blend E20-91RON and E30-91RON showed no knock benefit compared to the baseline E10-91RON fuel. However, the splash blend E20-96RON and E10-98RON enabled 11.9:1 CR with similar knock performance to E10-91RON at 10:1 CR. The splash blend E30-101RON enabled 13:1 CR with better knock performance than E10-91RON at 10:1 CR. As expected, E85-108RON exhibited dramatically better knock performance than E30-101RON.
Technical Paper

Dynamic Durability Analysis of Automotive Structures

1998-02-23
980695
Since the environment of vehicle operation is dynamic in nature, dynamic methods should be used in vehicle durability analysis. Due to the constraints in current computer resources, simulation of vehicle durability tests and structural fatigue life assessment need special approaches and efficient CAE tools. The purpose of this paper is to present an efficient methodology and a feasible vehicle dynamic durability analysis process. Two examples of structural durability analysis using transient dynamics are given. The examples show that vehicle stress analysis and fatigue life prediction using dynamic method is now feasible by employing the presented method and process.
Technical Paper

Powertrain Applications for Rapid Prototyping, Fabrication and Tooling in Motorsports

1998-11-16
983091
Rapid Prototyping, Fabrication and Tooling is a process that blends a series of technologies (machines, tools, and methods) capable of generating physical objects directly from a CAD database. The process dramatically reduces the time spent during product development by allowing for fast visualization, verification, iteration, optimization, and fabrication of parts and tools. Many new techniques of tooling have been and are being developed by using rapid fabricated parts. These are having a dramatic impact on both timing and costs throughout the automotive industry. One area that these methods can be utilized to their full potential is motorsports. Of particular interest is the growing use of bridge tooling to provide first article through production intent parts that promote cost effective changes.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Ford Motor Companys' new Torqshift 6 Automatic Transmission for Super Duty F250-F550 Truck

2010-04-12
2010-01-0859
Ford developed the 6R140 TorqShift six-speed transmission for the Ford F-series SuperDuty trucks. The 6R140 transmission is specifically designed to manage the increased torque produced by the 6.7-liter Power Stroke V-8 turbocharged diesel engine. It is also matched with the 6.2-liter V-8 gasoline engine. By design, the new 6R140 transmission seamlessly delivers the enormous low-rpm torque produced by the new diesel engine and efficiently manages the higher rpm of the new gasoline engine.
Technical Paper

Simulating and Correlation of Vehicle Startability on Grade Maneuvers

2010-10-06
2010-36-0325
The behavior knowledge of the vehicle on uphill maneuvers - startability on grade, is an important metric for sizing powertrain components, such as the engine torque, clutch, first and reverse gear ratios, final drive and tire sizes. During the uphill maneuver, all components of the powertrain are subject to efforts that determine the vehicle performance in this condition. The analysis of this maneuver, for a front-wheel-drive vehicle, is evaluated in this article, through a correlation of a computer program developed in Matlab-Simulink, with experimental measurements performed on the vehicle at the track, becoming an important tool for analysis of passenger vehicles subject to these conditions present on Brazilian streets.
Technical Paper

Contribution of sound package components to airborne attenuation

2010-10-06
2010-36-0328
In South America and other emerging markets sound package development is limited by the cost and weight of its components. Reaching the right balance between cost and a good NVH performance provides an important competitive advantage, therefore any achieved design opportunities can be replicated to other vehicle lines and markets. In this work the main noise transmission paths are verified by evaluating the contribution of sound package components to noise attenuation in two cases, initially from the tire contact patch through vehicle body to a number of positions within the vehicle interior and, next, from the engine compartment, by placing a High Frequency Sound Source (HFSS) at engine faces to the same vehicle interior positions. The main objective is to optimize sound package distribution and to prioritize which areas should have the sound package reinforced in order to improve Tire and Engine noise reduction.
Technical Paper

The Estimation of SEAT Values from Transmissibility Data

2001-03-05
2001-01-0392
Seat Effective Amplitude Transmissibility (SEAT) values can be obtained from direct measurements at seat track and top or estimated from transmissibility data and seat track input. Vertical transmissibility was measured for sixteen seats and six subjects on the Ford Vehicle Vibration Simulator, and these 96 functions used to estimate the seat top response for rough road input. SEAT values were calculated, and good correlation to values computed from direct seat top measurements obtained (R2 of 0.86). Averaging transmissibilities and direct seat measurements over the 6 subjects to obtain correlations for the 16 seats improved R2 to 0.94, validating this approach.
Technical Paper

Adaptive Fuzzy Neural Networks With Global Clustering

2004-03-08
2004-01-0294
This paper proposes a novel algorithm. This algorithm is called Self-Organizing Fuzzy Neural Network (SOFNN). SOFNN revolutionizes how researchers apply control theories, image/signal processing on control systems and other applications. In general, SOFNN is an identification technique that automatically initiates, builds and fine-tunes the required network parameters. SOFNN evaluates required structures without predefined parameters or expressions regarding systems. SOFNN sets out to learn and configure a system's characteristics. Self-constructing and self-tuning features enable SOFNN to handle complex, non-linear, and time-varying systems with higher accuracy, making systems identification easier. SOFNN constructs and fine-tunes the system parameter through two phases. The two phases are the construction and the parameter-tuning phase. The two phases run concurrently allowing SOFNN to identify systems on-line.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

2001-04-30
2001-01-1505
Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
X