Refine Your Search

Topic

Author

Search Results

Video

Ford: Driving Electric Car Efficiency

2012-03-29
The Focus Electric is Ford�s first full-featured 5 passenger battery electric vehicle. The engineering team set our sights on achieving best-in-class function and efficiency and was successful with an EPA certified 1XX MPGe and range XXX then the facing competition allowing for a slightly lower capacity battery pack and larger vehicle without customer trade-off. We briefly overview the engineering method and technologies employed to deliver the results as well as sharing some of the functional challenges unique to this type of vehicle. Presenter Charles Gray, Ford Motor Co.
Video

The Future (& Past) of Electrified Vehicles

2011-11-04
The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.
Journal Article

Power Management of Hybrid Electric Vehicles based on Pareto Optimal Maps

2014-04-01
2014-01-1820
Pareto optimal map concept has been applied to the optimization of the vehicle system control (VSC) strategy for a power-split hybrid electric vehicle (HEV) system. The methodology relies on an inner-loop optimization process to define Pareto maps of the best engine and electric motor/generator operating points given wheel power demand, vehicle speed, and battery power. Selected levels of model fidelity, from simple to very detailed, can be used to generate the Pareto maps. Optimal control is achieved by applying Pontryagin's minimum principle which is based on minimization of the Hamiltonian comprised of the rate of fuel consumption and a co-state variable multiplied by the rate of change of battery SOC. The approach delivers optimal control for lowest fuel consumption over a drive cycle while accounting for all critical vehicle operating constraints, e.g. battery charge balance and power limits, and engine speed and torque limits.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications

2015-04-14
2015-01-0252
Electric vehicles are receiving considerable attention because they offer a more efficient and sustainable transportation alternative compared to conventional fossil-fuel powered vehicles. Since the battery pack represents the primary energy storage component in an electric vehicle powertrain, it requires accurate monitoring and control. In order to effectively estimate the battery pack critical parameters such as the battery state of charge (SOC), state of health (SOH), and remaining capacity, a high-fidelity battery model is needed as part of a robust SOC estimation strategy. As the battery degrades, model parameters significantly change, and this model needs to account for all operating conditions throughout the battery's lifespan. For effective battery management system design, it is critical that the physical model adapts to parameter changes due to aging.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Journal Article

An Assessment of Two Piston Bowl Concepts in a Medium-Duty Diesel Engine

2012-04-16
2012-01-0423
Two combustion systems were developed and optimized for an engine for a power cylinder of 0.8-0.9L/cylinder. The first design was a re-entrant bowl concept which was based on the combustion system of a smaller engine with roughly 0.5L/cylinder. The second design was a chamfered bowl concept, a variant of a reentrant bowl that deliberately splits fuel between the bowl and the squish region. For each combustion system concept, nozzle tip protrusion, swirl, and nozzle configuration (number of holes, nozzle flow, and spray angle) were optimized. Several similarities between combustion system concepts were noted, including the optimal swirl and number of holes. The resulting optimums for each concept were compared. The chamfered combustion system was found to have better part-load emissions and fuel consumption tradeoffs. Full load performance was similar at low speed between the two combustion systems, but the reentrant combustion system had advantages at high engine speed and load.
Journal Article

A Pareto Frontier Analysis of Renewable-Energy Consumption, Range, and Cost for Hydrogen Fuel Cell vs. Battery Electric Vehicles

2012-04-16
2012-01-1224
As automakers strategize approaches to sustainable vehicle technologies, alternative powertrains must be considered to reduce future fleet vehicle emissions and improve energy security. These alternative vehicles include different fuels and electrification. The ultimate for on-road CO2 reductions is a zero emission vehicle, which can be achieved by either a hydrogen fuel cell or battery electric vehicle. These vehicles would also require a renewable energy source to provide their propulsion energy in order to achieve maximum sustainability for both CO2 reduction and energy security. Renewable energy sources such as wind or solar result in heat or electricity that needs to be generated into an energy carrier such as hydrogen or stored in a battery. When examining these options based strictly on the efficiency path, previous analysis have concluded fuel cell vehicles may not be an appropriate suitability strategy in comparison to battery electric vehicles.
Journal Article

Effects of Fuel Octane Rating and Ethanol Content on Knock, Fuel Economy, and CO2 for a Turbocharged DI Engine

2014-04-01
2014-01-1228
Engine dynamometer testing was performed comparing fuels having different octane ratings and ethanol content in a Ford 3.5L direct injection turbocharged (EcoBoost) engine at three compression ratios (CRs). The fuels included midlevel ethanol “splash blend” and “octane-matched blend” fuels, E10-98RON (U.S. premium), and E85-108RON. For the splash blends, denatured ethanol was added to E10-91RON, which resulted in E20-96RON and E30-101 RON. For the octane-matched blends, gasoline blendstocks were formulated to maintain constant RON and MON for E10, E20, and E30. The match blend E20-91RON and E30-91RON showed no knock benefit compared to the baseline E10-91RON fuel. However, the splash blend E20-96RON and E10-98RON enabled 11.9:1 CR with similar knock performance to E10-91RON at 10:1 CR. The splash blend E30-101RON enabled 13:1 CR with better knock performance than E10-91RON at 10:1 CR. As expected, E85-108RON exhibited dramatically better knock performance than E30-101RON.
Technical Paper

A Small Displacement DI Diesel Engine Concept for High Fuel Economy Vehicles

1997-08-06
972680
The small-displacement direct-injection (DI) diesel engine is a prime candidate for future transportation needs because of its high thermal efficiency combined with near term production feasibility. Ford Motor Company and FEV Engine Technology, Inc. are working together with the US Department of Energy to develop a small displacement DI diesel engine that meets the key challenges of emissions, NVH, and power density. The targets for the engine are to meet ULEV emission standards while maintaining a best fuel consumption of 200g/kW-hr. The NVH performance goal is transparency with state-of-the-art, four-cylinder gasoline vehicles. Advanced features are required to meet the ambitious targets for this engine. Small-bore combustion systems enable the downsizing of the engine required for high fuel economy with the NVH advantages a four- cylinder has over a three-cylinder engine.
Technical Paper

Dynamic Durability Analysis of Automotive Structures

1998-02-23
980695
Since the environment of vehicle operation is dynamic in nature, dynamic methods should be used in vehicle durability analysis. Due to the constraints in current computer resources, simulation of vehicle durability tests and structural fatigue life assessment need special approaches and efficient CAE tools. The purpose of this paper is to present an efficient methodology and a feasible vehicle dynamic durability analysis process. Two examples of structural durability analysis using transient dynamics are given. The examples show that vehicle stress analysis and fatigue life prediction using dynamic method is now feasible by employing the presented method and process.
Technical Paper

Control Challenges and Methodologies in Fuel Cell Vehicle Development

1998-10-19
98C054
In recent years, rapid and significant advances in fuel cell technology, together with advances in power electronics and control methodology, has enabled the development of high performance fuel cell powered electric vehicles. A key advance is that the low temperature (80°C) proton-exchange-membrane (PEM) fuel cell has become mature and robust enough to be used for automotive applications. Apart from the apparent advantage of lower vehicle emission, the overall fuel cell vehicle static and dynamic performance and power and energy efficiency are critically dependent on the intelligent design of the control systems and control methodologies. These include the control of: fuel cell heat and water management, fuel (hydrogen) and air (oxygen) supply and distribution, electric drive, main and auxiliary power management, and overall powertrain and vehicle systems.
Technical Paper

Economic, Environmental and Energy Life-Cycle Assessment of Coal Conversion to Automotive Fuels in China

1998-11-30
982207
A life-cycle assessment (LCA) has been developed to help compare the economic, environmental and energy (EEE) impacts of converting coal to automotive fuels in China. This model was used to evaluate the total economic cost to the customer, the effect on the local and global environments, and the energy efficiencies for each fuel option. It provides a total accounting for each step in the life cycle process including the mining and transportation of coal, the conversion of coal to fuel, fuel distribution, all materials and manufacturing processes used to produce a vehicle, and vehicle operation over the life of the vehicle. The seven fuel scenarios evaluated in this study include methanol from coal, byproduct methanol from coal, methanol from methane, methanol from coke oven gas, gasoline from coal, electricity from coal, and petroleum to gasoline and diesel. The LCA results for all fuels were compared to gasoline as a baseline case.
Technical Paper

Communication between Plug-in Vehicles and the Utility Grid

2010-04-12
2010-01-0837
This paper is the first in a series of documents designed to record the progress of the SAE J2293 Task Force as it continues to develop and refine the communication requirements between Plug-In Electric Vehicles (PEV) and the Electric Utility Grid. In February, 2008 the SAE Task Force was formed and it started by reviewing the existing SAE J2293 standard, which was originally developed by the Electric Vehicle (EV) Charging Controls Task Force in the 1990s. This legacy standard identified the communication requirements between the Electric Vehicle (EV) and the EV Supply Equipment (EVSE), including off-board charging systems necessary to transfer DC energy to the vehicle. It was apparent at the first Task Force meeting that the communications requirements between the PEV and utility grid being proposed by industry stakeholders were vastly different in the type of communications and messaging documented in the original standard.
Technical Paper

Engine Reliability Through Infant Mortality Mitigation: Literature Review

2010-10-06
2010-36-0049
Internal combustion engines are designed to meet the high power, low fuel consumption and also, low exhaust emissions. The engine running conditions is valid the concept that, the expectative is very high because of the variety of operating conditions like cold start, frequent start and stop, time high speed and load, traditional gasoline, mix of gasoline and alcohol and finally, alcohol fuel only. Considering such demand, this paper explains the relationship between the reliability bathtub curve, specifically the "Infant Mortality" portion. The bathtub curve describes failure rate as a function of time. The "Infant Mortality" portion of the curve is the initial section for which the failure (death) rate decreases with time (age). In general, these problems are related to manufacturing aspects or poor design definitions. With development of technology, hard failures, the ones that cause dependability, are becoming rare.
Technical Paper

Internal combustion engine calibration teaching by Stand Alone System.

2010-10-06
2010-36-0346
Internal combustion engine calibration teaching by Stand Alone System. This paper illustrates a teaching methodology for technical students of internal combustion engine calibration, by stand alone engine control unit with variable ignition and fuel injection time. Using a system named HIS (Stand alone Electronic Control Unit), to change the engine parameters, as fuel injection time and ignition time, the students can optimize fuel consumption, performance and exhaust emission. The tests are developed using the DOE (design of experiments) technique of artificial intelligence.
Technical Paper

The Estimation of SEAT Values from Transmissibility Data

2001-03-05
2001-01-0392
Seat Effective Amplitude Transmissibility (SEAT) values can be obtained from direct measurements at seat track and top or estimated from transmissibility data and seat track input. Vertical transmissibility was measured for sixteen seats and six subjects on the Ford Vehicle Vibration Simulator, and these 96 functions used to estimate the seat top response for rough road input. SEAT values were calculated, and good correlation to values computed from direct seat top measurements obtained (R2 of 0.86). Averaging transmissibilities and direct seat measurements over the 6 subjects to obtain correlations for the 16 seats improved R2 to 0.94, validating this approach.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Research and Development of Controlled Auto-Ignition (CAI) Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine

2001-09-24
2001-01-3608
Controlled Auto-Ignition (CAI) combustion has been achieved in a production type 4-stroke multi-cylinder gasoline engine. The engine was based on a Ford 1.7L Zetec-SE 16V engine with a compression ratio of 10.3, using substantially standard components modified only in design dimensions to control the gas exchange process in order to significantly increase the trapped residuals. The engine was also equipped with Variable Cam Timing (VCT) on both the intake and exhaust camshafts. It was found that the largely increased trapped residuals alone were sufficient to achieve CAI in this engine and with VCT, a range of loads between 0.5 and 4 bar BMEP and engine speeds between 1000 and 3500 rpm were mapped for CAI fuel consumption and exhaust emissions. The measured CAI results were compared with those of Spark Ignition (SI) combustion in the same engine but with standard camshafts at the same speeds and loads.
Technical Paper

Finite element simulation of drive shaft in truck/SUV frontal crash

2001-06-04
2001-06-0106
Drive shaft modelling effects frontal crash finite element simulation. A 35 mph rigid barrier impact of a body on frame SUV with an one piece drive shaft and a unibody SUV with a two piece drive shaft have been studied and simulated using finite element analyses. In the model, the drive shaft can take significant load in frontal impact crash. Assumptions regarding the drive shaft model can change the predicted engine motion in the simulation. This change influences the rocker @ B-pillar deceleration. Two modelling methods have been investigated in this study considering both joint mechanisms and material failure in dynamic impact. Model parameters for joint behavior and failure should be determined from vehicle design information and component testing. A body on frame SUV FEA model has been used to validate the drive shaft modeling technique by comparing the simulation results with crash test data.
X