Refine Your Search

Topic

Author

Search Results

Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Analytic Model of Powertrain Drive Cycle Efficiency, with Application to the US New Vehicle Fleet

2016-04-05
2016-01-0902
An analytic model of powertrain efficiency on a drive cycle was developed and evaluated using hundreds of cars and trucks from the US EPA ‘Test Car Lists’. The efficiency properties of naturally aspirated and downsized turbocharged engines were compared for vehicles with automatic transmissions on the US cycles. The resulting powertrain cycle efficiency model is proportional to the powertrain marginal energy conversion efficiency K, which is also its upper limit. It decreases as the powertrain matching parameters, the displacement-to-mass ratio (D/M) and the gearing ratio (n/V), increase. The inputs are the powertrain fuel consumption, the vehicle road load, and the cycle work requirement. They could be modeled simply with only minor approximations through the use of absolute inputs and outputs, and systematic use of scaling. On the Highway test, conventional automatic transmission vehicles of moderate performance achieve between 25% and 30% powertrain efficiency.
Journal Article

Systems Engineering Approach for Voice Recognition in the Car

2017-03-28
2017-01-1599
In this paper, a systems engineering approach is explored to evaluate the effect of design parameters that contribute to the performance of the embedded Automatic Speech Recognition (ASR) engine in a vehicle. This includes vehicle designs that influence the presence of environmental and HVAC noise, microphone placement strategy, seat position, and cabin material and geometry. Interactions can be analyzed between these factors and dominant influencers identified. Relationships can then be established between ASR engine performance and attribute performance metrics that quantify the link between the two. This helps aid proper target setting and hardware selection to meet the customer satisfaction goals for both teams.
Journal Article

Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine

2017-03-28
2017-01-1153
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. The engine’s limited operating range can be improved by taking advantage of electrification in the powertrain. In this study, a multi-mode LTC-SI engine is integrated with a parallel hybrid electric configuration, where the engine operation modes include Homogeneous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI). The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations.
Technical Paper

DC-Link Capacitor Sizing in HEV/EV e-Drive Power Electronic System from Stability Viewpoint

2020-04-14
2020-01-0468
Selection of the DC-link capacitance value in an HEV/EV e-Drive power electronic system depends on numerous factors including required voltage/current ratings of the capacitor, power dissipation, thermal limitation, energy storage capacity and impact on system stability. A challenge arises from the capacitance value selection based on DC-link stability due to the influence of multiple hardware parameters, control parameters, operating conditions and cross-coupling effects among them. This paper discusses an impedance-based methodology to determine the minimum required DC-link capacitance value that can enable stable operation of the system in this multi-dimensional variable space. A broad landscape of the minimum capacitance values is also presented to provide insights on the sensitivity of system stability to operating conditions.
Technical Paper

Engine Calibration Using Global Optimization Methods with Customization

2020-04-14
2020-01-0270
The automotive industry is subject to stringent regulations in emissions and growing customer demands for better fuel consumption and vehicle performance. Engine calibration, a process that optimizes engine performance by tuning engine controls (actuators), becomes challenging nowadays due to significant increase of complexity of modern engines. The traditional sweep-based engine calibration method is no longer sustainable. To tackle the challenge, this work considers two powerful global optimization methods: genetic algorithm (GA) and Bayesian optimization for steady-state engine calibration for single speed-load point. GA is a branch of meta-heuristic methods that has shown a great potential on solving difficult problems in automotive engineering. Bayesian optimization is an efficient global optimization method that solves problems with computationally expensive testing such as hyperparameter tuning in deep neural network (DNN), engine testing, etc.
Journal Article

Optimized Engine Accessory Drive Resulting in Vehicle FE Improvement

2008-04-01
2008-01-2761
A belt driven Front End Accessory Drive (FEAD) is used to efficiently supply power to accessory components on automotive engines. The total energy absorbed by the FEAD consists of the accessory component requirements, the belt deformation and friction losses as well as the bearing losses. The accessory component torque requirements provide accessory function such as air conditioning, fluid pumping and electrical power generation. Alternatively, belt related torque losses are a significant parasitic loss, since they do not contribute any useful work. This paper will explain the source of energy loss in FEADs and outline a comprehensive strategy to reduce it. Test results comparing the effect of reduced friction on fuel consumption will be presented as well.
Journal Article

Reliability-Based Design Optimization with Model Bias and Data Uncertainty

2013-04-08
2013-01-1384
Reliability-based design optimization (RBDO) has been widely used to obtain a reliable design via an existing CAE model considering the variations of input variables. However, most RBDO approaches do not consider the CAE model bias and uncertainty, which may largely affect the reliability assessment of the final design and result in risky design decisions. In this paper, the Gaussian Process Modeling (GPM) approach is applied to statistically correct the model discrepancy which is represented as a bias function, and to quantify model uncertainty based on collected data from either real tests or high-fidelity CAE simulations. After the corrected model is validated by extra sets of test data, it is integrated into the RBDO formulation to obtain a reliable solution that meets the overall reliability targets while considering both model and parameter uncertainties.
Journal Article

Vehicle Powertrain Thermal Management System Using Model Predictive Control

2016-04-05
2016-01-0215
An advanced powertrain cooling system with appropriate control strategy and active actuators allows greater flexibility in managing engine temperatures and operating near constraints. An organized controls development process is necessary to allow comparison of multiple configurations to select the best way forward. In this work, we formulate, calibrate and validate a Model Predictive Controller (MPC) for temperature regulation and constraint handling in an advanced cooling system. A model-based development process was followed; where the system model was used to develop and calibrate a gain scheduled linear MPC. The implementation of MPC for continuous systems and the modification related to implementing switching systems has been described. Multiple hardware configurations were compared with their corresponding control system in simulations. The system level requirements were translated into MPC calibration parameters for consistent comparison between multiple configurations.
Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
Journal Article

Powertrain Efficiency in the US Fleet on Regulatory Drive Cycles and with Advanced Technologies

2017-03-28
2017-01-0895
The drive cycle average powertrain efficiency of current US vehicles is studied by applying a first principles model to the EPA Test Car List database. The largest group of vehicles has naturally aspirated engines and six speed planetary automatic transmissions, and defines the base technology level. For this group the best cycle average powertrain efficiency is independent of vehicle size and is achieved by the lowest power-to-weight vehicles. For all segments of the EPA test, the fuel required per unit of vehicle work (the inverse of powertrain efficiency), is found to increase linearly with a basic powertrain matching parameter. The parameter is (D/M)(n/V), where D is engine displacement, M vehicle mass, and (n/V) the top gear engine speed over the vehicle speed. The fuel consumption penalties in the City segments due to powertrain warm-up, aftertreatment warm-up, stop-and-go operation, and power-off operation are estimated.
Journal Article

Decoupling Vehicle Work from Powertrain Properties in Vehicle Fuel Consumption

2018-04-03
2018-01-0322
The fuel consumption of a vehicle is shown to be linearly proportional to (1) total vehicle work required to drive the cycle due to mass and acceleration, tire friction, and aerodynamic drag and (2) the powertrain (PT) mechanical losses, which are approximately proportional to the engine displaced volume per unit distance travelled (displacement time gearing). The fuel usage increases linearly with work and displacement over a wide range of applications, and the rate of increase is inversely proportional to the marginal efficiency of the engine. The theoretical basis for these predictions is reviewed. Examples from current applications are discussed, where a single PT is used across several vehicles. A full vehicle cycle simulation model also predicts a linear relationship between fuel consumption, vehicle work, and displacement time gearing and agrees well with the application data.
Journal Article

Characterization of Powertrain Technology Benefits Using Normalized Engine and Vehicle Fuel Consumption Data

2018-04-03
2018-01-0318
Vehicle certification data are used to study the effectiveness of the major powertrain technologies used by car manufacturers to reduce fuel consumption. Methods for differentiating vehicles effectively were developed by leveraging theoretical models of engine and vehicle fuel consumption. One approach normalizes by displacement per unit distance, which puts both fuel used and vehicle work in mean effective pressure units, and is useful when comparing engine technologies. The other normalizes by engine rated power, a customer-relevant output metric. The normalized work/power is proportional to weight/power, the most fundamental performance metric. Certification data for 2016 and 2017 U.S. vehicles with different powertrain technologies are compared to baseline vehicles with port fuel injection (PFI) naturally aspirated engines and six-speed automatic transmissions.
Journal Article

Analytic Engine and Transmission Models for Vehicle Fuel Consumption Estimation

2015-04-14
2015-01-0981
A normalized analytical vehicle fuel consumption model is developed based on an input/output description of engine fuel consumption and transmission losses. Engine properties and fuel consumption are expressed in mean effective pressure (mep) units, while vehicle road load, acceleration and grade are expressed in acceleration units. The engine model concentrates on the low rpm operation. The fuel mep is approximately independent of speed and is a linear function of load, as long as the engine is not knock limited. A linear, two-constant engine model then covers the speed/load range of interest. The model constants are a function of well-known engine properties. Examples are discussed for naturally aspirated and turbocharged SI engines and for Diesel engines. A similar model is developed for the transmission where the offset reflects the spin and pump losses, and the slope is the gear efficiency.
Technical Paper

Modeling and Simulation of Small Hybrid

2006-11-21
2006-01-2758
Auto-manufacturers are under increasing pressure to develop powertrain systems for automotive vehicles, which are more efficient regarding fuel consumption, less polluting and still keep high performance levels. Hybrid electrical vehicles (HEV) are considered the most promising technology in sight, considering a time horizon of more ore less twenty years. HEVs combine benefits of electrical vehicles, such zero emission, low noise and high torques at low velocities and advantages of conventional vehicles, such as large autonomy, great reliability and high levels of performance. This paper is focused on the major elements of an HEV powertrain: electrical motors, internal combustion engine (ICE) and batteries, which are described. The paper also presents a comparison of two possible HEV configurations: series and parallel. The mathematical model of a small hybrid vehicle is developed using software ADVISOR.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

2007-05-15
2007-01-2335
The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
Technical Paper

The Advantages of Using Standard Vehicle Dynamics Procedures and Analysis Programs

1998-02-23
981077
Globalization in the automotive industry has resulted in a tremendous competitive advantage to those companies who can internally communicate ideas and information effectively and in a timely manner. This paper discusses one such effort related to objectively testing vehicles for steering and handling characteristics by implementing standard test procedures, data acquisition hardware and analysis methods. Ford Motor Company's Vehicle Dynamics Test Section has refined a number of test procedures to the point that, with proper training, all design and development engineers can quickly acquire, analyze and share test results. Four of these procedures and output are discussed in detail.
Technical Paper

Effective In-Vehicle Acquisition

1998-02-23
981076
This paper will describe the development of an in-vehicle data acquisition and analysis system. The problem facing the Vehicle Dynamics Test Section of Ford Motor Company was to replace an antiquated data recorder with a versatile in-vehicle data acquisition system capable of supporting vehicle dynamics testing and development. The following criteria for a system was developed: Quick and easy quick software and hardware setup Off-the-shelf hardware wherever possible User-friendly software Flexible Open-ended and modular design Rugged Cost effective Utilizing the above criteria a number of commercially available systems were evaluated and found to be lacking. Therefore it was decided that a system suitable for vehicle dynamics testing would have to be developed.
X