Refine Your Search

Topic

Author

Search Results

Journal Article

Exhaust Manifold Durability Subject to Splash Quenching

2015-04-14
2015-01-1735
Exhaust manifold design is one of the more challenging tasks for the engine engineer due to the harsh thermal and severe vibration environment. Extremely high exhaust gas temperatures and dynamic loading combine to subject the manifold to high cyclic stress when the material has reduced fatigue strength due to the high temperature. A long service life before a fatigue failure is the objective in exhaust manifold design. Accumulation of fatigue damage can occur from dynamic loading and thermal loading combined. Thermal mechanical fatigue (TMF) is a primary mechanism for accumulating fatigue damage. TMF typically occurs when a vehicle driving cycle has operating conditions that repeatedly change the exhaust gas temperature between hot and cold. Another way to experience temperature cycling is through splash quenching. Splash quenching was analyzed and found to rapidly accumulate fatigue damage.
Journal Article

Analysis of High Mileage Gasoline Exhaust Particle Filters

2016-04-05
2016-01-0941
The purpose of this work was to examine gasoline particle filters (GPFs) at high mileages. Soot levels for gasoline direct injection (GDI) engines are much lower than diesel engines; however, noncombustible material (ash) can cause increased backpressure, reduced power, and lower fuel economy. In this study, a post mortem was completed of two GPFs, one at 130,000 mi and the other at 150,000 mi, from two production 3.5L turbocharged GDI vehicles. The GPFs were ceramic wall-flow filters containing three-way catalytic washcoat and located downstream of conventional three-way catalysts. The oil consumption was measured to be approaching 23,000 mpqt for one vehicle and 30,000 mpqt for the other. The ash contained Ca, P, Zn, S, Fe, and catalytic washcoat. Approximately 50 wt% of the collected ash was non-lubricant derived. The filter capture efficiency of lubricant-derived ash was about 50% and the non-lubricant metal (mostly Fe) deposition rate was 0.9 to 1.2 g per 10,000 mi.
Journal Article

Stress-Corrosion Cracking Evaluation of Hot-Stamped AA7075-T6 B-Pillars

2017-03-28
2017-01-1271
High-strength aluminum alloys such as 7075 can be formed using advanced manufacturing methods such as hot stamping. Hot stamping utilizes an elevated temperature blank and the high pressure stamping contact of the forming die to simultaneously quench and form the sheet. However, changes in the thermal history induced by hot stamping may increase this alloy’s stress corrosion cracking (SCC) susceptibility, a common corrosion concern of 7000 series alloys. This work applied the breaking load method for SCC evaluation of hot stamped AA7075-T6 B-pillar panels that had been artificially aged by two different artificial aging practices (one-step and two-step). The breaking load strength of the specimens provided quantitative data that was used to compare the effects of tensile load, duration, alloy, and heat treatment on SCC behavior.
Technical Paper

How Well Can mPEMS Measure Gas Phase Motor Vehicle Exhaust Emissions?

2020-04-14
2020-01-0369
“Real world emissions” is an emerging area of focus in motor vehicle related air quality. These emissions are commonly recorded using portable emissions measurement systems (PEMS) designed for regulatory application, which are large, complex and costly. Miniature PEMS (mPEMS) is a developing technology that can significantly simplify on-board emissions measurement and potentially promote widespread use. Whereas full PEMS use analyzers to record NOx, CO, and HCs similar to those in emissions laboratories, mPEMS tend to use electrochemical sensors and compact optical detectors for their small size and low cost. The present work provides a comprehensive evaluation of this approach. It compares measurements of NOx, CO, CO2 and HC emissions from five commercial mPEMS to both laboratory and full regulatory PEMS analyzers. It further examines the use of vehicle on-board diagnostics data to calculate exhaust flow, as an alternative to on-vehicle exhaust flow measurement.
Journal Article

Dynamic Modeling of Fuel Cell Systems for Use in Automotive Applications

2008-04-14
2008-01-0633
This paper describes a proton-exchange-membrane Fuel Cells (FC) system dynamic model oriented to automotive applications. The dynamic model allows analysis of FC system transient response and can be used for: a) performance assessment; b) humidification analysis; c) analysis of special modes of operation, e.g., extended idle or freeze start; d) model based FC control design and validation. The model implements a modular structure with first principle based components representation. Emphasis is placed on development of a 1-D membrane water transport model used to simulate gas to gas humidification and stack membrane water diffusion. The Simulink implementation of the model is discussed and results showing FC system transient behavior are presented.
Journal Article

A New Catalyzed HC Trap Technology that Enhances the Conversion of Gasoline Fuel Cold-Start Emissions

2018-04-03
2018-01-0938
Passive in-line catalyzed hydrocarbon (HC) traps have been used by some manufacturers in the automotive industry to reduce regulated tailpipe (TP) emissions of non-methane organic gas (NMOG) during engine cold-start conditions. However, most NMOG molecules produced during gasoline combustion are only weakly adsorbed via physisorption onto the zeolites typically used in a HC trap. As a consequence, NMOG desorption occurs at low temperatures resulting in the use of very high platinum group metal (PGM) loadings in an effort to combust NMOG before it escapes from a HC trap. In the current study, a 2.0 L direct-injection (DI) Ford Focus running on gasoline fuel was evaluated with full useful life aftertreatment where the underbody converter was either a three-way catalyst (TWC) or a HC trap. A new HC trap technology developed by Ford and Umicore demonstrated reduced TP NMOG emissions of 50% over the TWC-only system without any increase in oxides of oxygen (NOx) emissions.
Technical Paper

Fuel Permeation Performance of Polymeric Materials Analyzed by Gas Chromatography and Sorption Techniques

1998-05-04
981360
This paper describes the results of permeation and sorption tests conducted to assess the properties of several plastic materials as barriers to fuel. The materials examined include ethylene-vinyl alcohol copolymers (EVOH), nylon, high density polyethylene, polyketone, poly-vinyledene fluoride (PVDF) as well as tetra-fluoro-ethylene, hexa-fluoro-propylene and vinyledene fluoride terpolymers (THV). The permeation from thin films of these materials exposed to methanol or CM15 was analyzed (speciated) by gas chromatography. These results are compared to those of parallel sorption experiments conducted on the same materials. The goal of this work is to determine the materials best suited for fuel barrier applications.
Technical Paper

Estimating Actual Exhaust Gas Temperature from Raw Thermocouple Measurements Acquired During Transient and Steady State Engine Dynamometer Tests

2007-04-16
2007-01-0335
Thermocouples are commonly used to measure exhaust gas temperature during automotive engineering experiments. In most cases, the raw measurements are used directly as an absolute indication of the actual exhaust gas temperature. However, in reality, the signal from a TC is only an indication of its own tip temperature. The TC indicated tip temperature can deviate significantly from the actual gas temperature due to factors such as thermal capacitance of the tip itself, and heat transfer to the exhaust pipe wall through conduction and radiation. A model has been developed that calculates the effects of these factors to provide an estimate of the actual exhaust gas temperature. Experiments were performed to validate the model under both transient and steady state engine dynamometer conditions utilizing three popular sizes of TCs. Good correlation among predictions for various TC sizes confirms the model's accuracy.
Technical Paper

Static and Fatigue Performance of Fusion Welded Uncoated DP780 Coach Joints

2008-04-14
2008-01-0695
Typical automotive joints are lap, coach, butt and miter joints. In tubular joining applications, a coach joint is common when one tube is joined to another tube without the use of brackets. Various fusion joining processes are popular in joining coach joints. Common fusion joining processes are Gas Metal Arc Welding (GMAW), Laser and Laser Hybrid, and Gas Tungsten arc welding (GTAW). In this study, fusion welded 2.0 mm uncoated DP780 steel coach joints were investigated. Laser, Gas metal arc welding (GMAW), and laser hybrid (Laser + GMAW) welding processes were selected. Metallurgical properties of the DP780 fusion welds were evaluated using optical microscopy. Static and fatigue tests were conducted on these joints for all three joining processes. It was found that joint fit-up, type of welding process, and process parameters, especially travel speed, have significant impact on static and fatigue performance of the coach joints in this study.
Technical Paper

A Transient, Multi-Cylinder Engine Model Using Modelica

2003-10-27
2003-01-3127
This paper describes a transient, thermodynamic, crank angle-based engine model in Modelica that can be used to simulate a range of advanced engine technologies. A single cylinder model is initially presented and described, along with its validation against steady-state dynamometer test data. Issues related to this single cylinder validation are discussed, including the appropriate conservation of hot residual gases under very early intake valve opening (IVO) conditions. From there, the extension from a single cylinder to a multi-cylinder V8 engine model is explained and simulation results are presented for a transient cylinder-deactivation scenario on a V8 engine.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Effects of Fuel Volatility, Load, and Speed on HC Emissions Due to Piston Wetting

2001-05-07
2001-01-2024
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In a previous study, we used a variety of pure liquid hydrocarbon fuels to examine the influence of fuel volatility and structure on the HC emissions due to piston wetting. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. All of these prior tests of fuel effects were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). In the present study, the effects of load and engine speed are examined.
Technical Paper

Co-fueling of Urea for Diesel Cars and Trucks

2002-03-04
2002-01-0290
Urea SCR is an established method to reduce NOx in dilute exhaust gas. The method is being used currently with stationary powerplants, and successful trials on motor vehicles have been conducted. The reason most often cited for rejecting urea SCR is lack of urea supply infrastructure, yet urea and other high nitrogen products are traded as commodities on the world market as a fertilizer grade, and an industrial grade is emerging. For a subset of commercial vehicles, urea can be provided by service personnel at designated terminals. But this approach does not support long distance carriers and personal use vehicles. The preferred delivery method is to add urea during vehicle refueling through a common fuel nozzle and fill pipe interface: urea / diesel co-fueling. Aqueous urea is well suited to delivery in this fashion.
Technical Paper

Managing Thermal Growth for Large Class “A” Polymer Body Panel Closure Systems

2002-01-04
2002-01-0276
The history behind Polymer Class “A” Body Panels for automotive applications is very interesting. The driving factors behind these applications have not changed significantly over the past sixty years. Foremost among these factors is the need for corrosion and dent resistance. Beginning with Saturn in 1990, interest in polymer body panels grew and continues to grow up to the present day, with every new global application. Today, consumers and economic factors drive the industry trend towards plastic body panels. These include increased customization and fuel economy on the consumer side. Economic factors such as lower unit build quantities, reduced vehicle mass, investment cost, and tooling lead times influence material choice for industry. The highest possible performance, and fuel economy, at the lowest price have always been a goal.
Technical Paper

Residual Stresses in Cup Drawing of Automotive Alloys

2002-07-09
2002-01-2135
Residual stresses in metals are caused by a number of processes such as inhomogeneous deformation, phase changes and temperature gradients. This investigation focuses on the residual stresses caused by plastic deformation of automotive metals. Such stresses are responsible for part springback and shape distortion in many manufacturing and assembly processes. Tensile residual stresses may lead to stress cracking and, in some alloys, to stress corrosion cracking which may ultimately lead to premature product failure. The residual stress potential of metals can be evaluated by using the Split Ring Test Method. The test can be used to evaluate the effect of materials on residual stresses in cup drawing. Drawn cups are used because they produce large amounts of residual stresses and, therefore, increase measurement accuracy and reduce experimental error. A closed form analytical solution is used to estimate residual stresses in split rings taken from sections cut from the drawn cups.
Technical Paper

Effects of Engine Oil Formulation Variables on Exhaust Emissions in Taxi Fleet Service

2002-10-21
2002-01-2680
The relationship between engine oil formulations and catalyst performance was investigated by comparatively testing five engine oils. In addition to one baseline production oil with a calcium plus magnesium detergent system, the remaining four oils were specifically formulated with different additive combinations including: one worst case with no detergent and production level zinc dialkyldithiophosphate (ZDTP), one with calcium-only detergent and two best cases with zero phosphorus. Emissions performance, phosphorus loss from the engine oil, phosphorus-capture on the catalyst and engine wear were evaluated after accumulating 100,000 miles of taxi service in twenty vehicles. The intent of this comparative study was to identify relative trends.
Technical Paper

Selective Galvanizing Using Kinetic Spraying

2003-03-03
2003-01-1237
General corrosion protection of sheet materials such as steel used in automobile construction has reached a high level of performance, due primarily to the incorporation of mill-applied treatments such as electrogalvanizing, galvannealing and other coil-coating processes developed over the last half century. While such treatments have greatly extended the corrosion resistance of steel and its various body constructs, attention is now focused on aspects of the manufacturing process wherein these intended protections are compromised by such features as weldments, joins, cut edges and extreme metal deformations such as hems. A novel metal deposition process, based on high-velocity impact fusion of solid metal particles, has been used to extend the corrosion resistance of base steel and pre-galvanized sheet, by selectively placing highly controlled depositions of zinc and other sacrificial materials in close proximity to critical manufacturing details.
Technical Paper

An Obliquely Incident X-Ray Radiography to Measure Greatest Corrosion Depths in Automobile Metallic Plates

2003-03-03
2003-01-1241
An obliquely incident X-ray radiography was developed to measure the greatest depths, orientations and locations of corrosion pits in automobile metallic plates. This technique can also be used on-site for components in use. The corrosion depth profile and the greatest depth can be calculated with the established relations. A 3-D rotational microscope and surface profiler were utilized to evaluate the sensitivities and accuracies of the technique for aluminum and steel plates, respectively.
Technical Paper

A Rapid Screening Test to Assess Relative Corrosion Performance of Automotive Condensers

2017-03-28
2017-01-0174
A simple and rapid immersion type corrosion test has been successfully developed that discriminates corrosion performance in condensers from various suppliers and with differing manufacturing processes. The goal is to develop a test specification that will be included in the Ford corrosion specification for condensers so that condensers received from various suppliers may be evaluated rapidly for their relative corrosion performance to each other. Sections from condensers from Supplier A (tube is silfluxed), Supplier B (tube is zinc arc sprayed), and Supplier C (bare folded tube with no zinc for corrosion protection) were tested in 2% v/v hydrochloric acid for 16, 24 and 48 hours. The results showed that in terms of corrosion performance, zinc arc sprayed Supplier B condenser performed the worst while Supplier C condenser performed the best with Supplier A in between. It was also observed that the fins, and fin-to-tube joints were first to corrode followed by the tube in all cases.
Technical Paper

R744 Parallel Compression Cycle for Automotive Climate Control

2017-03-28
2017-01-0175
The natural refrigerant, R744 (CO2), remains a viable solution to replace the high GWP refrigerant R134a which is to be phased out in light-duty vehicles in EU and US market. In this study, thermodynamic analysis is performed on a R744 parallel compression system to evaluate its potential in automotive climate control. The model adopts a correlation of isentropic efficiency as a function of compression ratio based on a prototype R744 MAC compressor and accounts for the operating limits defined in the latest DIN specifications. Optimization is run over typical MAC operating conditions which covers both transcritical and subcritical domain. Comparing to the conventional single compression cycle, effectiveness of parallel compression is found most pronounced in low evaporating temperature and high ambient conditions, with up to 21% increase in COP and 5.3 bar reduction in discharge pressure observed over the considered parametric range.
X