Refine Your Search

Topic

Author

Search Results

Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Integration of Independent Front Axles for Gear Mesh Energy

2007-05-15
2007-01-2240
The need for improved axle NVH integration has increased significantly in recent years with industry trends toward full-time and automatic four wheel drive (4wd) systems. Along with seamless 4wd operation, quiet performance has become a universal expectation. Axle gear-mesh noise can be transmitted to the vehicle passenger compartment through airborne paths (not discussed in this paper) and structure-borne paths (the focus of this paper.) A variety of mounting configurations are used in an attempt to provide improved axle isolation and reduce structure-borne transmission of gear-mesh noise. The configuration discussed in this paper is a 4-point vertical mount design for an Independent Front Drive Axle (IFDA). A significant benefit of this configuration is improved isolation in the range of drive torques where axle-related NVH issues typically exist.
Technical Paper

A New Approach to Evaluating Spot Welds for Automotive Durability

1998-09-29
982277
The need for accurate virtual prototyping prediction is well documented in the literature. For welded body structures one notable shortcoming has been the ability for finite element analysis (FEA) to accurately predict the failure of welded joints due to cyclic loading. A new approach to representing spot-welds for durability evaluation in automotive sheet metal structures is presented here. Excellent correlation with spot-weld failures in actual tests have been observed through this modeling approach. We present a method of representing spot-welds using the finite element method. This method has shown to be able of predicting the behavior of spot-welds prior to the build of any prototypes or testing. Further, for spot-weld failures we present evidence that reveals which radial quadrant of the spot-weld will contain the failure. This method also allows engineers to determine the mechanism of failure. This paper describes in detail the spot-weld modeling method.
Technical Paper

Experimental Characterization of the Unsteady Flow Field behind Two outside Rear View Mirrors

2008-04-14
2008-01-0476
The unsteady flow fields behind two different automobile outside side rear view mirrors were examined experimentally in order to obtain a comprehensive data base for the validation of the ongoing computational investigation effort to predict the aero-acoustic noise due to the outside rear view mirrors. This study is part of a larger scheme to predict the aero-acoustic noise due to various external components in vehicles. To aid with the characterization of this complex flow field, mean and unsteady surface pressure measurements were undertaken in the wake of two mirror models. Velocity measurements with particle image velocimetry were also conducted to develop the mean velocity field of the wake. Two full-scale mirror models with distinctive geometrical features were investigated.
Technical Paper

Cell Balancing Algorithm Verification through a Simulation Model for Lithium Ion Energy Storage Systems

2010-04-12
2010-01-1079
To support the market introduction of lithium ion energy storage systems for HEV and EREV applications, a process and tool was developed to expedite the verification of the lithium-ion cell balancing system across differing usage scenarios and cell imbalance rates. Presented is an overview of the cell imbalance analysis methodology and tool used in the development and verification of General Motors cell balancing systems. The use of this analysis methodology and tool has allowed for a cell balancing system optimization that would not have been possible with the use of actual energy storage systems because of the magnitude of lab or vehicle time required to execute the array of tests necessary to comprehend the large number of factors than can influence balancing.
Technical Paper

Conductive Polyphenylene Ether/Polyamide Blend for Saturn Exterior Body Panels

2001-03-05
2001-01-0446
The evolution toward the use of electrostatic painting processes has been driven primarily by environmental legislation and efforts to improve efficiencies in the painting process. The development of conductive substrate material compliments the industry trend toward a green environment through further reductions in emissions of volatile organic compounds during the painting process. Traditionally, electrostatic painting of thermoplastics requires that a conductive primer be applied to the substrate prior to topcoat application. The conductive polymer blend of polyphenylene ether and polyamide provides sufficient conductivity to eliminate usage of conductive primers. Additional benefits include improved transfer efficiencies of the primer and top coat systems, uniform film builds across the part, and improved painting of complex geometries.
Technical Paper

A Robust Procedure for Convergent Nonparametric Multivariate Metamodel Design

2004-03-08
2004-01-1127
Fast-running metamodels (surrogates or response surfaces) that approximate multivariate input/output relationships of time-consuming CAE simulations facilitate effective design trade-offs and optimizations in the vehicle development process. While the cross-validated nonparametric metamodeling methods are capable of capturing the highly nonlinear input/output relationships, it is crucial to ensure the adequacy of the metamodel error estimates. Moreover, in order to circumvent the so-called curse-of-dimensionality in constructing any nonlinear multivariate metamodels from a realistic number of expensive simulations, it is necessary to reliably eliminate insignificant inputs and consequently reduce the metamodel prediction error by focusing on major contributors. This paper presents a robust data-adaptive nonparametric metamodeling procedure that combines a convergent variable screening process with a robust 2-level error assessment strategy to achieve better metamodel accuracy.
Technical Paper

Discomfort Glare Ratings of Swiveling HID Headlamps

2004-05-10
2004-01-2257
Sixteen participants aged 55–65yrs provided deBoer scale ratings of discomfort glare for a vehicle with horizontally swiveling HID headlamps and a vehicle with the same headlamps that did not swivel in eight scenarios staged in a darkened parking lot. Participants, who were seated in the driver’s position of a stationary vehicle and instructed when to look, viewed the oncoming test vehicles in scenarios of 180m left turn, 180m right turn, 80m left turn, 80m right turn, left turn beside participant vehicle, crossing left in front of participant vehicle, right turn beside participant vehicle, and straightaway, in counterbalanced presentation orders. The swiveling headlamp vehicle provided statistically lower glare ratings in both 180m curves and the 80m right curve and statistically lower or similar in the intersection scenarios than the fixed headlamp vehicle.
Technical Paper

Target Detection Distances and Driver Performance with Swiveling HID Headlamps

2004-05-10
2004-01-2258
Twent-two participants of varying ages detected roadside targets in two consecutive dynamic evaluations of a horizontally swiveling headlamp vehicle and a vehicle with the same headlamps that did not swivel. Participants detected targets as they drove unlighted low-speed public roads. Scenarios encountered were intersection turns, and curves with approximate radii of 70-90m, 120-140m, 170-190m, and 215-220m. Results from the first study found improved detection distances from the swiveling headlamps in left curves, but unexpectedly decreased detection distances in larger radius right hand curves. The swiveling algorithm was altered for the second study, and the headlamps used did not have the same beam pattern as in the first study. Results from the second study again found improved detection distances from the swiveling headlamps while in the larger radius right hand curves fixed and swivel were not statistically different.
Technical Paper

Application of Modal Transient Dynamics to Calculate Body Fatigue Life

2001-10-16
2001-01-3087
The methodology of predicting analytical fatigue life of automotive body structures using two commercially available computer codes, NASTRAN and NCODE is described. Modal transient durability simulations are improved with use of residual vectors incorporating inertia relief basis functions. Simulations consisting of hundreds of thousand finite elements and hours of road loads are routine.
Technical Paper

Simplified Approach for Formability Simulation of Automotive Body Structures

2001-10-16
2001-01-3048
This paper presents a simplified approach for formability simulation of automotive body structural sections in the early design stage of vehicle development process. Plane strain approach is investigated for its applicability and accuracy by comparing the analytical results with the measured results of automotive body side panel. The plane strain approach was tried based on the fact that for a certain section location of a stamped panel, the minor strains are relatively small and negligible compared to the major strains. The state of plane strain can be induced mainly through symmetry and applied boundary conditions. This approach is both cost effective and time saving for analyzing sheet metal formability in early vehicle development stage, since only few sections of the entire panel need be analyzed.
Technical Paper

Weathering of Black Plastics for Automotive Exteriors

2003-03-03
2003-01-1191
Ten mold-in-color black polymers were evaluated for exterior weathering in an attempt to improve the specifications for exterior mold-in-color plastics to meet five year durability for a 95th percentile sunbelt customer. Four different weathering methods were utilized including Arizona exposure, Florida exposure, and Xenon arc exposures per the GMNA and the GM Europe methods. Colorfastness, gloss retention and other material property changes due to weathering were measured and analyzed against two GM durability standards. For the appearance attributes, correlations between actual exposure and accelerated exposure were attempted. Test results before and after polishing were also analyzed. Finally, in addition to comparing the performance of the ten polymers, the four weathering methods are compared and discussed with recommendations for the preferred testing regimen.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

Noise and Vibration Measurement Methods for Large Diameter Single-Piece Aluminum Propeller Shafts

2017-06-05
2017-01-1775
This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
Technical Paper

Failure Evaluation of Clinched Thin Gauged Pedestrian Friendly Hood by Slam Simulation

2011-04-12
2011-01-0789
In order to reduce the number of head injuries sustained by pedestrian accidents, safety engineers are developing pedestrian friendly hood systems through gauge optimization of the hood inner panel. In this study, the clinch method was employed to assemble a pedestrian friendly hood with a 0.5mm thick inner panel. Static and dynamic analyses were carried out to determine the clinch experiencing the highest loads and to understand the fatigue behavior of a clinched hood during a slam event. The macroscopic failure modes of clinched joints by hood slam were studied by means of a scanning electron microscope. A simple equation was derived to correlate the hexahedron spot weld model as a substitute for clinching in order to obtain an equivalent stiffness for a clinched joint within the linear region of an F-D curve. The F-D curve was obtained by lap shear testing.
Technical Paper

Central Bus Guardian Application for Fault Isolation in System based on Flexray Protocol

2011-10-04
2011-36-0306
The automotive system domain are in increasing motivation with benefits by using the x-by-wire technologies, which employ new electronic devices to provide for automobile system more facilities during processes at development, production, usability and maintenance. Considering at automobile user domain point of view, the next generation of automobiles can give users more comfort, safety and flexibility. However, for the safety critical applications at automobiles have as requirements the use of distributed embedded systems and fault tolerance methodologies where in communication infrastructure need to offer fault-tolerance communication services. Several researches regards fault tolerance communication systems for automotive domain are now in progress and a strong convergence in use of the Flexray technology is noted for the automotive community. The Flexray is one of the communication systems that had been proposed and available at AUTOSAR standard.
Technical Paper

CFD Based Lumped Parameter Method to Predict the Thermal Performance of Brake Rotors in Vehicle

2003-03-03
2003-01-0601
The objective of the paper is to outline a CFD based lumped parameter method that compares the thermal performance of brake rotors, predicts the transient temperatures and brake lining wear in vehicle. A two-pronged approach was developed for this purpose. A rotor stand-alone model was used to predict rotor performance curves. Simultaneously heat transfer coefficients of the brake rotor were computed corresponding to the rotor performance curves and the appropriate heat transfer correlations were established. The second part of this approach involved developing a brake model in a vehicle and solving for the air flow through rotors in different vehicles at various speeds. These rotor flows were cross-referenced with the rotor performance curves, generated earlier for that rotor, to compute the heat transfer coefficients in the vehicle.
Technical Paper

Mercury Switches in Underhood and Trunk Lamp Applications: A Detailed Environmental and Economic Analysis of Alternatives

1997-02-24
970698
The largest application of mercury in automotive applications occurs in underhood and trunk lamp activation switches. A reduction of mercury in this application will have a significant impact on automotive mercury usage. Using environmentally conscious design and manufacturing principles, this paper will investigate functional alternatives for the activation of underhood (U/H) and trunk lamp applications. Five alternatives to perform the activation function will be analyzed in four areas over their life cycles: Environmental Economic Engineering Manufacturing Each alternative will be ranked on criteria in each of these four areas using documented LCA processes. Totals will be generated for each area, then weighted and added to arrive at an overall score. Four groups of weightings will be used based on the vehicle type: small cars, mid-size cars, large/luxury cars, and trucks.
Technical Paper

The Importance of Analysis of Electrical Parameters for Design of Analog Circuits in Automotive Modules

2012-10-02
2012-36-0209
The intention of this paper is to discuss the importance of analysis of some electrical parameters in order to design analog circuits in electronic modules, including automotive ones. Today, the challenge is to have devices which consume less power, high performance and higher integration density, so that it explains why such analysis is crucial to achieve better performances and meet the desired results.
X