Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Methodology for Sizing and Validating Life of Brake Pads Analytically

2014-09-28
2014-01-2495
An area of brake system design that has remained continually resistant to objective, computer model based predictive design and has instead continued to rely on empirical methods and prior history, is that of sizing the brake pads to insure satisfactory service life of the friction material. Despite advances in CAE tools and methods, the ever-intensifying pressures of shortened vehicle development cycles, and the loss of prototype vehicle properties, there is still considerable effort devoted to vehicle-level testing on public roads using “customer-based” driving cycles to validate brake pad service life. Furthermore, there does not appear to be a firm, objective means of designing the required pad volume into the calipers early on - there is still much reliance on prior experience.
Technical Paper

Using Simulation to Quantify Sine with Dwell Maneuver Test Metric Variability

2008-04-14
2008-01-0590
The Sine with Dwell (SWD) maneuver is the basis for the NHTSA FMVSS-126 regulation. When put into effect, all vehicles under 10,000 lbs GVWR will need to pass this test. Understanding the variability in the yaw rate ratio and lateral displacement test metrics is important for vehicle design. Anything that influences vehicle handling can affect test metric variability. Vehicle handling performance depends largely on vertical tire patch loads, tire force and moment behavior, on slip angle, and camber angle. Tire patch loads are influenced, among other things, by weight distribution and (quasi-static and dynamic) roll-couple distribution. Tire force and moment relationships have a distinct shapes, but they all commonly rise to a peak value at a given slip angle value and then fall off with increasing slip angle. Severe handling maneuvers, like the SWD operate at slip angles that are at, or above, the peak lateral force.
Technical Paper

The GM RWD PHEV Propulsion System for the Cadillac CT6 Luxury Sedan

2016-04-05
2016-01-1159
This paper describes the capabilities of a new two-motor plug-in hybrid-electric propulsion system developed for rear wheel drive. The PHEV system comprises a 2.0L turbocharged 4-cylinder direct-injected gasoline engine with the new hybrid transmission [1], a new traction power inverter module, a liquid-cooled lithium-ion battery pack, and on-board battery charger and 12V power converter module. The capability and features of the system components are described, and component performance and vehicle data are reported. The resulting propulsion system provides an excellent combination of electric-only driving, acceleration, and fuel economy.
Technical Paper

A Rough Road Ride Simulation Assessment with Flexible Vehicle Body

2014-04-01
2014-01-0112
A rough road ride assessment provides an insightful evaluation of vehicle responses beyond the frequency range of suspension or steering modes. This is when body structure influence on the vehicle performance can be detected by vehicle occupants. In this paper, a rough road is used to evaluate vehicle ride performance and multi-body simulation (MBS) models are developed along with finite-element (FE) representations of the vehicle body and structure. To produce high fidelity simulation results in the frequency range of interest, various vehicle subsystem modeling contents are examined. A case study of a vehicle model with two different structures is provided. Time histories and frequency based analyses are used to obtain insights into the effects of body structure on vehicle responses. Finally, two metrics (‘Isolation’ and ‘Shake’) are used to distinguish the vehicle ride performance.
X