Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Journal Article

Engine Diagnostics Using Acoustic Emissions Sensors

2016-04-05
2016-01-0639
Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
Journal Article

Challenges in Real Time Controls Simulation (Hardware-In-the-Loop) in Active Safety for Subsystem Level Software Verification

2011-04-12
2011-01-0450
As the new features for driver assistance and active safety systems are growing rapidly in vehicles, the simulation within a virtual environment has become a necessity. The current active safety system consists of Electronic Control Units (ECUs) which are coupled to camera and radar sensors. Two methods of implementation exists, integrated sensors with control modules or separation of sensors form control modules. The subsystem integration testing poses new challenges for virtual environment for simulation of active safety features. The comprehensive simulation environment for integration testing consists of chassis controls, powertrain, driver assistance, body and displays controllers. Additional complexity in the system is the serial communication strategy. Multiple communication protocols such as GMLAN, LIN, standard CAN, and Flexray could be present within the same vehicle topology.
Journal Article

Boundary Condition Effect on the Correlation of an Acoustic Finite Element Passenger Compartment Model

2011-04-12
2011-01-0506
Three different acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different models are a traditional model, an improved model, and an optimized model. The traditional model represents the passenger and trunk compartment cavities and the coupling between them through the rear seat cavity. The improved model includes traditional acoustic models of the passenger and trunk compartments, as well as equivalent-acoustic finite element models of the front and rear seats, parcel shelf, door volumes, instrument panel, and trunk wheel well volume. An optimized version of the improved acoustic model is developed by modifying the equivalent-acoustic properties. Modal analysis tests of a vehicle were conducted using loudspeaker excitation to identify the compartment cavity modes and sound pressure response to 500 Hz to assess the accuracy of the acoustic models.
Journal Article

Driver Acceptance and Use of a Speed Limit and Curve Advisor

2011-04-12
2011-01-0550
This research examined driver acceptance and behavior associated with Speed Limit and Curve Advisor systems, including influences on speed choice. Drivers experienced messages from an emulated Speed Limit and Curve Advisor system during a 2-hour public road drive. Driver tolerance for system errors and message conflicts was also studied by manipulating the accuracy of the information provided by the system. Messages were presented using either a Head-Up Display or on an in-dash Driver Information Center. Results indicate that drivers liked having speed limit information continuously available to them while driving, but the information provided by the Speed Limit Advisor did not significantly influence or alter drivers' speed choice or deceleration profiles in comparison to driving without the system.
Journal Article

Modeling/Analysis of Pedestrian Back-Over Crashes from NHTSA's SCI Database

2011-04-12
2011-01-0588
An analysis of the first 35 back-over crashes reported by NHTSA's Special Crash Investigations unit was undertaken with two objectives: (1) to test a hypothesized classification of backing crashes into types, and (2) to characterize scenario-specific conditions that may drive countermeasure development requirements and/or objective test development requirements. Backing crash cases were sorted by type, and then analyzed in terms of key features. Subsequent modeling of these SCI cases was done using an adaptation of the Driving Reliability and Error Analysis Methodology (DREAM) and Cognitive Reliability and Error Analysis Methodology (CREAM) (similar to previous applications, for instance, by Ljung and Sandin to lane departure crashes [10]), which is felt to provide a useful tool for crash avoidance technology development.
Journal Article

Issues Related to the Use and Design of a Backing Rear Cross Traffic Alert System

2011-04-12
2011-01-0578
Alternative implementations of a Rear Cross Traffic Alert (RCTA) system intended to actively notify drivers of the presence of rear cross-path traffic when backing were evaluated in naturalistic settings. The feature is one of several emerging technologies designed to assist drivers when backing - in this case, enhancing drivers' awareness of traffic approaching from the rear. The study allowed performance under a range of RCTA system driver interface implementations to be contrasted with conventional and wide Field of View (FOV) Rear Vision systems. Evaluations were conducted using a sample of 70 drivers under naturalistic settings and environments with repeated exposures to backing tasks. The study also made use of a staged conflict situation with a confederate vehicle in order to more precisely quantify driver behavior and system usage across drivers under controlled conflict situations.
Journal Article

Understanding Driver Perceptions of a Vehicle to Vehicle (V2V) Communication System Using a Test Track Demonstration

2011-04-12
2011-01-0577
Vehicle-to-vehicle (V2V) communication systems can enable a number of wireless-based vehicle features that can improve traffic safety, driver convenience, and roadway efficiency and facilitate many types of in-vehicle services. These systems have an extended communication range that can provide drivers with information about the position and movements of nearby V2Vequipped vehicles. Using this technology, these vehicles are able to communicate roadway events that are beyond the driver's view and provide advisory information that will aid drivers in avoiding collisions or congestion ahead. Given a typical communication range of 300 meters, drivers can potentially receive information well in advance of their arrival to a particular location. The timing and nature of presenting V2V information to the driver will vary depending on the nature and criticality of the scenario.
Journal Article

Challenges for Tire Noise Evaluation on Common Pavements

2011-05-17
2011-01-1582
Developing common methods of noise evaluation and facilities can present a number of challenges in the area of tire/pavement noise. Some of the issues involved include the design and construction of pavements globally, the change in pavement over time, and variation in the noise produced with standard test tires used as references. To help understand and address these issues for airborne tire/pavement noise, acoustic intensity measurement methods based on the On-board Sound Intensity (OBSI) technique have been used. Initial evaluations have included measurements conducted at several different proving grounds. Also included were measurements taken on a 3m diameter tire noise dynamometer with surfaces replicating test track pavements. Variation between facilities appears to be a function of both design/construction and pavement age. Consistent with trends in the literature, for smooth asphalt surfaces, the newest surface produced levels lower than older surfaces.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

Application of System Safety Engineering Processes to Advanced Battery Safety

2011-04-12
2011-01-1369
The battery system in the Chevrolet Volt is very complex and must balance a variety of performance criteria, including the safety of vehicle occupants and other users. In order to assure a thorough approach to battery system safety, a system safety engineering process was applied and found to provide a useful framework. This methodical approach began with the preliminary hazard analysis and continued through requirements definition, design development and, finally, validation. Potentially hazardous conditions related directly to functional safety (for example, charge control) and primary physical safety (for example, short circuit conditions) can all be addressed in this manner. Typical battery abuse testing, as well as newly defined limit testing, supported the effort. Extensive documentation, traceability and peer reviews helped to verify that all issues were addressed.
Technical Paper

Measurement of Occupant Pocketing Kinematics During Whiplash Assessments

2011-04-12
2011-01-0270
This study documents a method developed for dynamically measuring occupant pocketing during various low-speed rear impact, or “whiplash” sled tests. This dynamic pocketing measurement can then be related to the various test parameters used to establish the performance rating or compliance results. Consumer metric and regulatory tests discussed within this paper as potential applications of this technique include, but are not limited to, the Insurance Institute for Highway Safety (IIHS) Low Speed Rear Impact (LSRI) rating, Federal Motor Vehicle Safety Standard (FMVSS) 202a, and European New Car Assessment Program (EURO-NCAP) whiplash rating. Example metrics are also described which may be used to assist in establishing the design position of the head restraint and optimize the balance between low-speed rear impact performance and customer comfort.
Technical Paper

Development of Robust CAE Modeling Technique for Decklid Slam Analysis

2011-04-12
2011-01-0242
Engineering has continuously strived to improve the vehicle development process to achieve high quality designs and quick to launch products. The design process has to have the tools and capabilities to help ensure both quick to the market product and a flawless launch. To achieve high fidelity and robust design, mistakes and other quality issues must be addressed early in the engineering process. One way to detect problems early is to use the math based modeling and simulation techniques of the analysis group. The correlation of the actual vehicle performance to the predictive model is crucial to obtain. Without high correlation, the change management process begins to get complicated and costs start to increase exponentially. It is critical to reduce and eliminate the risk in a design up front before tooling begins to kick off. The push to help achieve a high rate of correlation has been initiated by engineering management, seeing this as an asset to the business.
Technical Paper

Random Frequency Response Analysis of Battery Systems Using ‘Virtual Shaker Table’

2011-04-12
2011-01-0665
This paper presents ‘Virtual Shaker Table’: a CAE method that enables random frequency structural response and random vibration fatigue analyses of a battery system. The Virtual Shaker Table method is a practical and systematic procedure that effectively assesses battery system vibration performance prior to final design, build and testing. A random structural frequency response analysis identifies the critical frequencies and modes at which the battery system is excited by random inputs. Fatigue life may be predicted after PSD stresses have been ascertained. This method enables frequency response analysis techniques to be applied quickly and accurately, thereby allowing assessment of multiple design alternatives. Virtual Shaker Table facilitates an elegant solution to some of the significant challenges inherent to complex battery system design and integration.
Technical Paper

Metrics for Quantifying and Evaluating Ability of Electronic Control System Architectures to Accommodate Changes

2011-04-12
2011-01-0447
Recent trends in the automotive industry show growing demands for the introduction of new in-vehicle features (e.g., smart-phone integration, adaptive cruise control, etc.) at increasing rates and with reduced time-to-market. New technological developments (e.g., in-vehicle Ethernet, multi-core technologies, AUTOSAR standardized software architectures, smart video and radar sensors, etc.) provide opportunities as well as challenges to automotive designers for introducing and implementing new features at lower costs, and with increased safety and security. As a result, the design of Electrical/Electronic (E/E) architectures is becoming increasingly challenging as several hardware resources are needed. In our earlier work, we have provided top-level definitions for three relevant metrics that can be used to evaluate E/E architecture alternatives in the early stages of the design process: flexibility, scalability and expandability.
Technical Paper

Factors Moderating the Effectiveness of Rear Vision Systems: What Performance-Shaping Factors Contribute to Drivers' Detection and Response to Unexpected In-Path Obstacles When Backing?

2011-04-12
2011-01-0549
General Motors (GM) and the Virginia Tech Transportation Institute (VTTI) have partnered to conduct a series of studies characterizing the use and effectiveness of technologies designed to assist drivers while backing. A major emphasis of this research has been on Rear Vision Camera (RVC) systems that provide drivers with an enhanced view of the area behind the vehicle. RVC systems are intended to aid in positioning the vehicle when executing low-speed parking and backing-related tasks and are not necessarily well suited for detecting unexpected in-path obstacles (particularly if the RVC image is not coupled with object detection alerts issued to the driver).
Technical Paper

The Simulation of Air Induction Noise Using 1D-3D Coupling

2011-04-12
2011-01-0500
Compartment noise has gained significant importance to meet customer expectation. One of the sources of noise is air intake noise. Intake noise is produced by both opening and closing of the inlet valve. This makes source noise critical to the development of air induction system. The new approach has been thought for noise analysis of Air Induction System (AIS) to identify source noise using 1D-3D coupling. It is very difficult to simulate engine and air induction system in Computational Fluid Dynamics (CFD) due to complexities in geometry. The objective of the present study is to predict the pulsed noise and flow noise using 1D-3D coupling. The engine with 1D code and AIS with 3D CFD code is simulated. Engine pulsation from GT-Power is provided as an input boundary condition to ANSYS Fluent. GT-Power exchanges boundary values to 3D computation domain at each CFD time step through special connections. The CFD code is run with implicit discretisation scheme and SAS turbulence model.
Technical Paper

Drive Point Mobility, Transmissibility and Beyond

2011-04-12
2011-01-0502
Drive Point Mobility is commonly used in lab tests and structural analysis for the purposes of measuring and evaluating the N&V performance of a dynamic system. Unless the drive point itself is also the point of interest (for responses), the author finds that it can only provide very limited information about the whole system's dynamic / vibrational characteristics. Thus one should always try to measure, analyze, and then improve, instead of Drive Point Mobility alone, the non-drive point mobility or the generalized transmissibility as well, for their structural N&V performance. A simplified 3-DOF spring/mass/damper system is first used to illustrate the dynamic characters of the system. For more realistic structures, a FE model of the body/floor and (body side) hanger (for exhaust) is used. Then a more complete system model, consisting of a full exhaust, it's hangers/isolators, and part of the vehicle chassis/body/floor structure, is used in this paper to illustrate the above points.
Technical Paper

Structural-Acoustic Analysis of Vehicle Body Panel Participation to Interior Acoustic Boom Noise

2011-04-12
2011-01-0496
A structural-acoustic finite element model of an automotive vehicle is developed and applied to evaluate the effect of structural and acoustic modifications to reduce low-frequency ‘boom’ noise in the passenger compartment. The structural-acoustic model is developed from a trimmed body structural model that is coupled with an acoustic model of the passenger compartment and trunk cavities. The interior noise response is computed for shaker excitation loads at the powertrain mount attachment locations on the body. The body panel and modal participation diagrams at the peak response frequencies are evaluated. A polar diagram identifies the dominant body panel contributions to the ‘boom’ noise. A modal participation diagram determines the body modes that contribute to the ‘boom’ noise. Finally, structural and acoustic modifications are evaluated to determine their effect on reducing the ‘boom’ noise and on the overall lower-frequency sound pressure level response.
X