Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

Effects of Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2011-04-12
2011-01-0908
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries. The impact of these inhibitors on spark ignited fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the additive concentrations to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel; and, to show how the variation in the concentrations of the CIs impact the operation and performance of vehicles, specifically, the effects on intake valve deposit formation. Commercially available corrosion inhibitor packages for both gasoline and ethanol blended fuels, specifically E85 fuels, were studied for their chemical compositions, and their impact on valves for a port fuel injection (PFI) engine.
Technical Paper

Fast Gas Analyzer Observations of Stochastic Preignition Events

2019-04-02
2019-01-0254
The goal of this study was to generate exhaust fast gas data that could be used to identify phenomena that occur before, during, and after stochastic preignition (SPI), also called low-speed preignition (LSPI), events. Crank angle resolved measurement of exhaust hydrocarbons, NO, CO, and CO2 was performed under engine conditions prone to these events. Fuels and engine operating strategies were varied in an attempt to understand similarities and differences in SPI-related behavior that may occur between them. Several different uncommon (typically occurring in less than 1% of engine cycles) features of the fast gas data were identified, and the correlations between them and SPI events were explored. Although the thresholds used to define and identify these observations were arbitrary, they provided a practical means of identifying behavior in the fast gas data and correlating it to SPI occurrence.
Journal Article

Fuel & Lubricant Effects on Stochastic Preignition

2019-01-15
2019-01-0038
In this multi-phase study, fuel and lubricant effects on stochastic preignition (SPI) were examined. First, the behavior of fuels for which SPI data had previously been collected were characterized in terms of their combustion and emissions behavior, and correlations between these characteristics and their SPI behavior were examined. Second, new SPI data was collected for a matrix of fuels that was constructed to test and confirm hypotheses that resulted from interpretation of the earlier data in the study and from data in open literature. Specifically, the extent to which the presence of heavy components in the fuel affected SPI propensity, and the extent to which flame initiation propensity affected SPI propensity, were examined. Finally, the interaction of fuels with lubricants expected to exhibit a range of SPI propensities was examined.
X