Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Technical Paper

Assessment of Flow Noise Mitigation Potential of a Complex Aftertreatment System through a Hybrid Computational Aeroacoustics Methodology

2021-09-05
2021-24-0091
Flow noise produced by the turbulent motion of the exhaust gases is one of the main contributions to the noise generation for a heavy-duty vehicle. The exhaust system has therefore to be optimized since the early stages of the design to improve the engine’s Noise Vibration Harshness (NVH) performance and to comply with legislation noise limits. In this context, the availability of reliable Computational Aero-Acoustics (CAA) methodologies is crucial to assess the noise mitigation potential of different exhaust system designs. In the present work, a characterization of the sound generation in a heavy-duty exhaust system was carried out evaluating the noise attenuation potential of a design modification, by means of a hybrid CAA methodology.
Technical Paper

Development of a Numerical Methodology for the Assessment of Flow Noise in Complex Engine Exhaust Systems

2021-08-31
2021-01-1043
Worldwide regulations concerning noise emissions of road vehicles are constantly demanding further reductions of acoustic emissions, which are considered a major environmental health concern in several countries. Among the different sources contributing to noise generation in vehicles equipped with internal combustion engines, exhaust flow noise is one of the most significant, being generated by turbulence development in the exhaust gases, and robust and reliable numerical methodologies for its prediction in early design phases are currently still needed. To this extent, Computational Aero-Acoustics (CAA) can be considered a valuable approach to characterize the physical mechanisms leading to flow noise generation and its propagation, and it could therefore be used to support exhaust system development prior to the execution of experimental testing campaigns.
Technical Paper

Tire Experimental Characterization Using Contactless Measurement Methods

2021-08-31
2021-01-1114
In the frame of automotive Noise Vibration and Harshness (NVH) evaluation, inner cabin noise is among the most important indicators. The main noise contributors can be identified in engine, suspensions, tires, powertrain, brake system, etc. With the advent of E-vehicles and the consequent absence of the Internal Combustion Engine (ICE), tire/road noise has gained more importance, particularly at mid-speed driving and in the spectrum up to 300 Hz. At the state of the art, the identification and characterization of Noise and Vibration sources rely on pointwise sensors (microphones, accelerometers, strain gauges). Optical methods such as Digital Image Correlation (DIC) and Laser Doppler Vibrometer (LDV) have recently received special attention in the NVH field because they can be used to obtain full-field measurements.
Journal Article

Engine Diagnostics Using Acoustic Emissions Sensors

2016-04-05
2016-01-0639
Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
Journal Article

Boundary Condition Effect on the Correlation of an Acoustic Finite Element Passenger Compartment Model

2011-04-12
2011-01-0506
Three different acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different models are a traditional model, an improved model, and an optimized model. The traditional model represents the passenger and trunk compartment cavities and the coupling between them through the rear seat cavity. The improved model includes traditional acoustic models of the passenger and trunk compartments, as well as equivalent-acoustic finite element models of the front and rear seats, parcel shelf, door volumes, instrument panel, and trunk wheel well volume. An optimized version of the improved acoustic model is developed by modifying the equivalent-acoustic properties. Modal analysis tests of a vehicle were conducted using loudspeaker excitation to identify the compartment cavity modes and sound pressure response to 500 Hz to assess the accuracy of the acoustic models.
Journal Article

Challenges for Tire Noise Evaluation on Common Pavements

2011-05-17
2011-01-1582
Developing common methods of noise evaluation and facilities can present a number of challenges in the area of tire/pavement noise. Some of the issues involved include the design and construction of pavements globally, the change in pavement over time, and variation in the noise produced with standard test tires used as references. To help understand and address these issues for airborne tire/pavement noise, acoustic intensity measurement methods based on the On-board Sound Intensity (OBSI) technique have been used. Initial evaluations have included measurements conducted at several different proving grounds. Also included were measurements taken on a 3m diameter tire noise dynamometer with surfaces replicating test track pavements. Variation between facilities appears to be a function of both design/construction and pavement age. Consistent with trends in the literature, for smooth asphalt surfaces, the newest surface produced levels lower than older surfaces.
Technical Paper

Flow Induced Noise Emanating from Evaporator Tube Plates

2007-04-16
2007-01-1522
This work examines, objectively and subjectively, refrigerant noise induced by the flow of R134a through seven different plate-type automotive evaporator tubes with two tube heights and airflow depths ranging from about 45 mm to 75 mm. Experiments were conducted with both superheated and two-phase refrigerant without and with heating, and without/with lubricant. Measurements of tube surface acceleration were used to quantify flow induced acoustic phenomena. Flow velocity is found to be the critical variable influencing the surface acceleration. Only three types of evaporator tubes consistently whistle above certain threshold velocities. Two other types of tubes produce sporadic, inconsistent whistling, while the remaining two types of tubes never whistle. Half tubes have little influence on acoustic resonance.Adiabatic two-phase flows through a tube never produce resonance.
Technical Paper

A Proposal of an Oil Pan Optimization Methodology

2010-04-12
2010-01-0417
In the powertrain technology, designers must be careful on oil pan design in order to obtain the best noise, vibration and harshness (NVH) performance. This is a great issue for the automotive design because they affect the passengers' comfort. In order to reduce vibration and radiated noise in powertrain assembly, oil pan is one of the most critical components. The high stiffness of the oil pan permits to move up the natural modes of the component and, as a consequence, reduce the sound emission of the component itself. In addition, the optimized shape of the component allows the increase of natural frequency values of the engine assembly. The aim of this study is the development of a methodology to increase the oil pan stiffness starting from a sketch of the component and adding material where it is needed. The methodology is tested on a series of different models: they have the same geometry but different materials.
Technical Paper

Development of Robust CAE Modeling Technique for Decklid Slam Analysis

2011-04-12
2011-01-0242
Engineering has continuously strived to improve the vehicle development process to achieve high quality designs and quick to launch products. The design process has to have the tools and capabilities to help ensure both quick to the market product and a flawless launch. To achieve high fidelity and robust design, mistakes and other quality issues must be addressed early in the engineering process. One way to detect problems early is to use the math based modeling and simulation techniques of the analysis group. The correlation of the actual vehicle performance to the predictive model is crucial to obtain. Without high correlation, the change management process begins to get complicated and costs start to increase exponentially. It is critical to reduce and eliminate the risk in a design up front before tooling begins to kick off. The push to help achieve a high rate of correlation has been initiated by engineering management, seeing this as an asset to the business.
Technical Paper

Random Frequency Response Analysis of Battery Systems Using ‘Virtual Shaker Table’

2011-04-12
2011-01-0665
This paper presents ‘Virtual Shaker Table’: a CAE method that enables random frequency structural response and random vibration fatigue analyses of a battery system. The Virtual Shaker Table method is a practical and systematic procedure that effectively assesses battery system vibration performance prior to final design, build and testing. A random structural frequency response analysis identifies the critical frequencies and modes at which the battery system is excited by random inputs. Fatigue life may be predicted after PSD stresses have been ascertained. This method enables frequency response analysis techniques to be applied quickly and accurately, thereby allowing assessment of multiple design alternatives. Virtual Shaker Table facilitates an elegant solution to some of the significant challenges inherent to complex battery system design and integration.
Technical Paper

Sensitivity Analysis of the Design Parameters of a Dual-Clutch Transmission Focused on NVH Performance

2016-04-05
2016-01-1127
This paper presents a methodology for the assessment of the NVH (noise vibration and harshness) performance of Dual Clutch Transmissions (DCTs) depending on some transmission design parameters, e.g. torsional backlash in the synchronizers or clutch disc moment of inertia, during low speed maneuvers. A 21-DOFs nonlinear dynamic model of a C-segment passenger car equipped with a DCT is used to simulate the torsional behavior of the driveline and to estimate the forces at the bearings. The impacts between the teeth of two engaging components, e.g. gears and synchronizers, generate impulses in the forces, thus loading the bearings with force time-history characterized by rich frequency content. A broadband excitation is therefore applied to the gearbox case, generating noise and vibration issues.
Technical Paper

Digital Shaping and Optimization of Fuel Injection Pattern for a Common Rail Automotive Diesel Engine through Numerical Simulation

2017-09-04
2017-24-0025
Development trends in modern Common Rail Fuel Injection System (FIS) show dramatically increasing capabilities in terms of optimization of the fuel injection pattern through a constantly increasing number of injection events per engine cycle along with a modulation and shaping of the injection rate. In order to fully exploit the potential of the abovementioned fuel injection pattern optimization, numerical simulation can play a fundamental role by allowing the creation of a kind of a virtual injection rate generator for the assessment of the corresponding engine outputs in terms of combustion characteristics such as burn rate, emission formation and combustion noise (CN). This paper is focused on the analysis of the effects of digitalization of pilot events in the injection pattern on Brake Specific Fuel Consumption (BSFC), CN and emissions for a EURO 6 passenger car 4-cylinder diesel engine.
Technical Paper

Enhancing Transmission NVH Performance through Powertrain Control Integration with Active Braking System

2017-06-05
2017-01-1778
This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking. Due to external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, the torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), may lead to NVH issues known as clonk. This study initially focuses on the positive effect on transmission NVH performance of a concurrent application of a braking torque at the driving wheels and of an engine torque increase during these maneuvers; then a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize losses.
Technical Paper

The Simulation of Air Induction Noise Using 1D-3D Coupling

2011-04-12
2011-01-0500
Compartment noise has gained significant importance to meet customer expectation. One of the sources of noise is air intake noise. Intake noise is produced by both opening and closing of the inlet valve. This makes source noise critical to the development of air induction system. The new approach has been thought for noise analysis of Air Induction System (AIS) to identify source noise using 1D-3D coupling. It is very difficult to simulate engine and air induction system in Computational Fluid Dynamics (CFD) due to complexities in geometry. The objective of the present study is to predict the pulsed noise and flow noise using 1D-3D coupling. The engine with 1D code and AIS with 3D CFD code is simulated. Engine pulsation from GT-Power is provided as an input boundary condition to ANSYS Fluent. GT-Power exchanges boundary values to 3D computation domain at each CFD time step through special connections. The CFD code is run with implicit discretisation scheme and SAS turbulence model.
Technical Paper

Drive Point Mobility, Transmissibility and Beyond

2011-04-12
2011-01-0502
Drive Point Mobility is commonly used in lab tests and structural analysis for the purposes of measuring and evaluating the N&V performance of a dynamic system. Unless the drive point itself is also the point of interest (for responses), the author finds that it can only provide very limited information about the whole system's dynamic / vibrational characteristics. Thus one should always try to measure, analyze, and then improve, instead of Drive Point Mobility alone, the non-drive point mobility or the generalized transmissibility as well, for their structural N&V performance. A simplified 3-DOF spring/mass/damper system is first used to illustrate the dynamic characters of the system. For more realistic structures, a FE model of the body/floor and (body side) hanger (for exhaust) is used. Then a more complete system model, consisting of a full exhaust, it's hangers/isolators, and part of the vehicle chassis/body/floor structure, is used in this paper to illustrate the above points.
Technical Paper

Structural-Acoustic Analysis of Vehicle Body Panel Participation to Interior Acoustic Boom Noise

2011-04-12
2011-01-0496
A structural-acoustic finite element model of an automotive vehicle is developed and applied to evaluate the effect of structural and acoustic modifications to reduce low-frequency ‘boom’ noise in the passenger compartment. The structural-acoustic model is developed from a trimmed body structural model that is coupled with an acoustic model of the passenger compartment and trunk cavities. The interior noise response is computed for shaker excitation loads at the powertrain mount attachment locations on the body. The body panel and modal participation diagrams at the peak response frequencies are evaluated. A polar diagram identifies the dominant body panel contributions to the ‘boom’ noise. A modal participation diagram determines the body modes that contribute to the ‘boom’ noise. Finally, structural and acoustic modifications are evaluated to determine their effect on reducing the ‘boom’ noise and on the overall lower-frequency sound pressure level response.
Technical Paper

Radiated Fuel Tank Slosh Noise Simulation

2011-04-12
2011-01-0495
With the introduction of hybrid vehicles and the associated elimination of engine and exhaust masking noises, sounds from other sources is becoming more noticeable. Fuel tank sloshing is one of these sources. Fuel sloshing occurs when a vehicle is accelerated in any direction and can create noise that may be perceived as a quality issue by the customer. To reduce slosh noise, a fuel tank has to be carefully designed. Reduction in slosh noise using test- based methods can be very costly and timely. This paper shows how, using the combination of CFD (Computational Fluid Dynamic), FE (Finite Element) and Acoustic simulation methods, the radiated fuel tank slosh noise performance can be evaluated using CAE methods. Although the de-coupled fluid /structure interaction (FSI) method was used for the examples in this paper, the acoustic simulation method is not limited to the decoupled FSI method.
Technical Paper

Small Amplitude Torsional Steering Column Dynamics on Smooth Roads: In-Vehicle Effects and Internal Sources

2011-04-12
2011-01-0560
Internally excited torsional steering wheel vibrations at frequencies near 8-22 Hz on smooth roads can produce driver disturbances, commonly described as “SHAKE”. These vibrations are primarily excited by the rotating front suspension corners and are periodic in the rotational frequencies of the tire-wheel assemblies. The combination of vehicular dynamic amplification originating in dominant suspension and steering system vibratory modes, and a sufficiently large 1st harmonic non-uniformity excitation of the rotating corner components, can result in periodic vibrations exceeding thresholds of disturbance. Controlling the periodic non-uniformity excitation through individual component requirements (e.g., wheel imbalance, tire force variation, wheel runout, concentric piloting of wheel on hub) is difficult since the desired upper limits of individual component requirements for vibration-free performance are typically beyond industry capability.
Technical Paper

Vehicle Acoustic Sensitivity Performance Using Virtual Engineering

2011-04-12
2011-01-1072
In order to assess the possible ways of energy transfer from the various sources of excitation in a vehicle assembly to a given target location, frequency based substructuring technique and transfer path analysis are used. These methods help to locate the most important energy transfer paths for a specific problem, and to evaluate their individual effects on the target, thus providing valuable insight into the mechanisms responsible for the problem. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc. This paper is devoted to identify the noise transfer paths and the force transmissibility among the interfaces of different components in the vehicle for the low to mid frequency range.
X