Refine Your Search

Topic

Author

Search Results

Journal Article

Improving the Measurement Accuracy of Water Partial Pressure Using the Major Constituent Analyzer

2009-07-12
2009-01-2432
The Major Constituent Analyzer (MCA) is a mass spectrometer based system that measures the major components of the International Space Station (ISS) atmosphere, including water. The measurement of water vapor has been difficult due to adsorption on various surfaces in the sample path, and has thus far been discounted in MCA atmosphere monitoring. This paper summarizes the results in identifying the primary source of the problem, the modeling being used to further elucidate the water surface adsorption/desorption process, and the proposed means available to provide a stable calibration and accurate measure of the water abundance.
Journal Article

Safety Assessment of Complex, Software-Intensive Systems

2012-10-22
2012-01-2134
This paper presents a new methodology for the safety assessment of complex software intensive systems such as is envisioned for the coming major upgrade of the air traffic management system known as NextGen. This methodology is based on a new, more inclusive model of accident causation called Systems Theoretic Accident Model and Process (STAMP) [1]. STAMP includes not just the standard component failure mechanisms but also the new ways that software and humans contribute to accidents in complex systems. A new hazard analysis method, called Systems Theoretic Process Analysis (STPA), is built on this theoretical foundation. The STPA is based on systems theory rather than reliability theory; it treats safety as a control problem rather than a failure problem with interactive and possibly nested control loops that may include humans. In this methodology, safety is assured by closed loop control of safety parameters.
Technical Paper

Spacelab Neurovestibular Hardware

1991-07-01
911566
A set of devices for measurement of human balance orientation and eye movements in weightlessness was developed for neurovestibular experiments on Spacelab. The experiments involve astronaut motion, limb position changes, and moving visual fields, measurements are made of eye movements, muscular activity and orientation perception. This joint US/Canadian research program represent a group of closely related experiments designed to investigate space motion sickness, any associated changes in otolith-mediated responses occurring during weightlessness, and the continuation of changes to postflight conditions. The otoliths are a component of the vestibular apparatus which is located in the middle ear. It is responsible for maintaining the body's balance. Gravitational pull on the otoliths causes them to constantly appraise the nervous system of the position of the head with respect to the direction of gravity.
Technical Paper

Development of a Portable Contamination Detector for Use During EVA

1991-07-01
911387
Initial efforts in the development of an EVA portable contamination detector (EVA PCD) for use by the EVA crew have resulted in the selection and preliminary testing of a concept based upon time-of-flight(TOF) mass spectrometry. The EVA PCD will be a compact, man-portable device intended for use in the ambient vacuum outside the Space Station. It will be used to monitor the surfaces of the EVA suits and mobility units for the presence of potentially toxic contaminants, such as hydrazine propellants and oxidizers, which might otherwise be inadvertently carried into the interior of the Station. The EVA PCD will also be used to locate small leaks of heat exchange fluids in the outer surface of the Station. This paper describes some key performance needs for the EVA PCD system, approaches taken to interpreting those needs, and some of the results of tradeoff analyses which led to the selection of the TOF concept. Some results from initial experimental tests of a TOF unit are presented.
Technical Paper

The Development of a Volatile Organics Concentrator for Use in Monitoring Space Station Water Quality

1991-07-01
911435
An approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment has been previously described (Reference 1). The Volatile Organics Concentrator (VOC) system was designed for attachment to a gas chromatograph/mass spectrometer (GC/MS) for analysis of the volatile organics in water on Space Station Freedom. The VOC concept utilizes a primary solid sorbent for collection and concentration of the the organics from water, with subsequent transfer using nitrogen gas through a permeation dryer tube to a secondary solid sorbent tube. The secondary solid sorbent is thermally desorbed to a gas chromatograph for separation of the volatiles which are detected using a mass spectrometer.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

The Mars Gravity Biosatellite: Atmospheric Reconditioning Strategies for Extended-Duration Rodent Life Support

2007-07-09
2007-01-3224
We present results which verify the design parameters and suggest performance capabilities/limitations of the Mars Gravity Biosatellite's proposed atmospherics control subassembly. Using a combination of benchtop prototype testing and analytic techniques, we derive control requirements for ammonia. Further, we demonstrate the dehumidification performance of our proposed partial gravity condensing heat exchanger. Ammonia production is of particular concern in rodent habitats. The contaminant is released following chemical degradation of liquid waste products. The rate of production is linked to humidity levels and to the design of habitat modules in terms of bedding substrate, air flow rates, choice of structural materials, and other complex factors. Ammonia buildup can rapidly lead to rodent health concerns and can negatively impact scientific return.
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Development of Ice Crystal Facilities for Engine Testing

2007-09-24
2007-01-3290
The Gas Turbine Laboratory of the National Research Council of Canada (NRC) has been involved in icing certification testing of gas turbine engines for over 60 years. It has become evident from flight incident reports in recent years, that ice crystals can have serious effects on the performance of the core of a gas turbine. This has led to the proposal of a new certification requirement for turbofan engines. This paper describes the test facilities and procedures, as well as the analysis and verification methods, which have been used recently to develop a new ice crystal generating system. The paper describes the ice crystal production and delivery systems, as well as the design and development version for business jet sized engines. In addition, a description of some component testing using ice crystals on a heated flat plate is included to demonstrate that the facility can replicate rapid ice crystal build-up on surfaces which are significantly above the melting point.
Technical Paper

A Volatile Organics Concentrator for Use in Monitoring Space Station Water Quality

1990-07-01
901352
The process used to identify, select and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is described. The Volatile Organics Concentrator (VOC) system described in this paper has been designed for attachment to a gas chromatograph/mass spectrometer (GC/MS) for analysis of volatile organics in water on Space Station. In this work, in order to rank the many identified approaches, the system was broken into three critical areas. These were gases, volatile separation from water and water removal/GC/MS interface. Five options involving different gases (or combinations) for potential use in the VOC and GC/MS system were identified and ranked. Nine options for separation of volatiles from the water phase were identified and ranked. Seven options for use in the water removal/GC column and MS interface were also identified and included in overall considerations.
Technical Paper

Air Quality Monitoring by Open Path Fourier Transform Infrared (FTIR) Spectrometry

1997-07-01
972391
The feasibility of using open path Fourier transform infrared (OP-FTIR) spectrometry as an ambient air sensor on spacecraft was examined. OP-FTIR is a valuable monitoring technique because the sensor requires no sample preparation or separations and compositional information obtained is along a path rather than at a sampling point. OP-FTIR monitors and quantitates in real-time, offers high sensitivity, and detection is compound-specific. The data analysis, data reduction, and hardware requirements were investigated and potential applicability of chemometric methods and state-of-the-art commercial hardware systems were discussed.
Technical Paper

Open Path Fourier Transform Infrared (OP-FTIR) Spectrometry as a Multi-Analyte Sensor for Spacecraft Air

1998-07-13
981567
Open-path Fourier transform infrared (OP-FTIR) spectrometry was evaluated for potential application to the measurement of contaminants in spacecraft air environments. OP-FTIR provides simultaneous, real-time quantification and confirmation of identity for most contaminants on the current Spacecraft Maximum Allowable Concentration (SMAC) list. In addition, the open-path measurement configuration provides characterization of an area rather than at a point. The dynamic composition and distribution of air contaminants throughout spacecraft air systems is measured without the need for multi-point sampling. These characteristics of open path FTIR make it a valuable method for spacecraft air characterization.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

An EVA Mission Planning Tool based on Metabolic Cost Optimization

2009-07-12
2009-01-2562
An extravehicular activity (EVA) path-planning and navigation tool, called the Mission Planner, has been developed to assist with pre-mission planning, scenario simulation, real-time navigation, and contingency replanning during astronaut EVAs, The Mission Planner calculates the most efficient path between user-specified waypoints. Efficiency is based on an exploration cost algorithm, which is a function of the estimated astronaut metabolic rate. Selection of waypoints and visualization of the generated path are realized within a 3D mapping interface through terrain elevation models. The Mission Planner is also capable of computing the most efficient path back home from any point along the path.
Technical Paper

Characterization of Structural, Volume and Pressure Components to Space Suit Joint Rigidity

2009-07-12
2009-01-2535
Gas-pressurized space suits are highly resistive to astronaut movement, and this resistance has been previously explained by volume and/or structural effects. This study proposed that an additional effect, pressure effects due to compressing/expanding the internal gas during joint articulation, also inhibits mobility. EMU elbow torque components were quantified through hypobaric testing. Structural effects dominated at low joint angles, and volume effects were found to be the primary torque component at higher angles. Pressure effects were found to be significant only at high joint angles (increased flexion), contributing up to 8.8% of the total torque. These effects are predicted to increase for larger, multi-axis joints. An active regulator system was developed to mitigate pressure effects, and was found to be capable of mitigating repeated pressure spikes caused by volume changes.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

The Design and Testing of a Fully Redundant Regenerative CO2 Removal System (RCRS) for the Shuttle Orbiter

2001-07-09
2001-01-2420
Research into increased capacity solid amine sorbents has found a candidate (SA9T) that will provide enough increase in cyclic carbon dioxide removal capacity to produce a fully redundant Regenerative Carbon Dioxide Removal System (RCRS). This system will eliminate the need for large quantities of backup LiOH, thus gaining critical storage space on board the shuttle orbiter. This new sorbent has shown an ability to package two fully redundant (four) sorbent beds together with their respective valves, fans and plumbing to create two operationally independent systems. The increase in CO2 removal capacity of the new sorbent will allow these two systems to fit within the envelope presently used by the RCRS. This paper reports on the sub-scale amine testing performed in support of the development effort. In addition, this paper will provide a preliminary design schematic of a fully redundant RCRS.
Technical Paper

Modeling Space Suit Mobility: Applications to Design and Operations

2001-07-09
2001-01-2162
Computer simulation of extravehicular activity (EVA) is increasingly being used in planning and training for EVA. A space suit model is an important, but often overlooked, component of an EVA simulation. Because of the inherent difficulties in collecting angle and torque data for space suit joints in realistic conditions, little data exists on the torques that a space suit’s wearer must provide in order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuvering Unit (EMU), with a novel measurement technique that used both human test subjects and an instrumented robot. Using data collected in the experiment, a hysteresis modeling technique was used to predict EMU joint torques from joint angular positions. The hysteresis model was then applied to EVA operations by mapping out the reach and work envelopes for the EMU.
Technical Paper

Comparative Space Suit Boot Test

2002-07-15
2002-01-2315
In applications that require space-suited crewmembers to traverse rough terrain, boot fit and mobility are of critical importance to the crewmember's overall performance capabilities. Current extravehicular activity (EVA) boot designs were developed for micro-gravity applications, and as such, incorporate only minimal mobility features. Recently three advanced space suit boot designs were evaluated at the National Aeronautics and Space Administration Johnson Space Center (NASA/JSC). The three designs included: 1) a modified Space Shuttle suit (Extravehicular Mobility Unit or EMU) boot, 2) the Modified Experiment Boot designed and fabricated by RD & PE Zvezda JSC, and 3) a boot designed and fabricated by the David Clark Company. Descriptions of each configuration and rationale for each boot design are presented.
X