Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

A Study of Reliability Evaluation of Main Bearings for Multicylinder Diesel Engines

2016-04-05
2016-01-0494
In recent years, although experiment technologies on real engines and simulation technologies has been improved rapidly, the tribology contributing factors have not been quantitatively well evaluated to reveal critical lubrication failure mechanisms. In this study the oil film thickness of the main bearings in multicylinder diesel engines was measured, and the data was analyzed using response surface methodology, which is a statistical analysis methods used to quantitatively derive the factors affecting oil film thickness and the extent of their contribution. We found that the factor with the strongest effect on minimum oil film thickness is oil pressure. Lastly, as a verification test, bearing wear on the main bearings was compared under various oil pressure conditions. Clear differences in bearing wear were identified.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Noise-Generating Mechanism and Noise Reduction of Reciprocating Air Compressor for Heavy Duty Vehicles

2007-05-15
2007-01-2374
The noise-generating mechanism of a reciprocating air compressor for heavy duty vehicles during idling was investigated. It was elucidated that the gear rattling noise of the air compressor drive gear train caused by the negative value of the air compressor drive torque was a major noise source. To completely suppress the gear rattling phenomenon, a new loading device with an air cylinder that cancels the negative value of the air compressor drive torque was fabricated. When the loading device was worked, the impulsive sound level was reduced to 10 dB(A). It was found that the impulsive sound level during gear rattling is closely related to the difference in gear teeth velocity between the crankshaft gear and the air compressor drive gear, as one of the characteristics that are needed to obtain a guide for carrying out estimations in the calculation simulation.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

Experimental Modal Analysis for Cylinder Block-Crankshaft Substructure Systems of Six-cylinder In-line Diesel Engines

2001-04-30
2001-01-1421
A newly developed OHC (Over-Head Camshaft) prototype of a six-cylinder in-line diesel engine (with bore size: 114mm, stroke size: 130mm) was studied, comparing with the previous version of OHV (Over-Head Valve) type engine (with bore size: 110mm, stroke size: 130mm). It was found that the new type of cylinder block (with 130.8 kg of mass) has significantly lower natural frequencies than those for the previous type of cylinder block (with 133.2 kg of mass). Furthermore, slightly more predominant engine noise and vibration were induced in the new engine. The vibration behavior and the excitation force transmission characteristics were investigated by EMA (Experimental Modal Analysis). We performed a series of impact tests for (1) free-free cylinder block, (2) free-free crankshaft substructure with torsional damper and flywheel attached, and (3) the case where (1) and (2) are assembled together.
Technical Paper

Experimental Study for High Specific Load Bearings in the Diesel Engine

2002-03-04
2002-01-0297
Recently, exhaust emission has been enforced on diesel engines for the countermeasure of environmental problems. Accordingly, the cylinder pressure in the engine is being increased to improve fuel efficiency, the engine bearings must be used under severe conditions of high specific load. Because the connecting rod bearings, particularly of diesel engines, are used at high specific loads that exceed 100 MPa, elastic deformation of the bearing surface occurs, and the oil film thickness decreases at the edges of the bearing length in the axial direction. This causes the bearings to contact with the crankshaft, thus resulting in the wear of the bearings, which could even result in seizure. The following factors contribute to seizure: bearing materials, bearing shapes, machining methods, and incorrect assembly. Focusing on these factors, this study evaluated the behaviors exhibited by connecting rod bearings in actual engines by using the rig testers.
Technical Paper

Development of Next Generation Gear Oil for Heavy Duty Vehicles

2017-03-28
2017-01-0890
Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
Technical Paper

Impacts on Engine Oil Performance by the Use of Waste Cooking Oil as Diesel Fuel

2011-08-30
2011-01-2115
Technical impacts on engine oil performance by the use of waste cooking oil as bio-diesel fuel (BDF) are not well understood while the industry has made significant progress in studies on quality specifications and infrastructure. The authors, who consist of a consortium organized by Japan Lubricating Oil Society (JALOS), examined technical effects of waste cooking oil as BDF on engine oil performance such as wear and high temperature corrosion using vehicle fleets and bench tests to identify technical issues of engine oil meeting the use of BDF. The study brings fundamental information about technical impacts of BDF on engine oils.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 3rd Report: Effect of Piston Motion on Piston Skirt Oil Film Behavior

2006-10-16
2006-01-3349
The necessity of the reduction of the lubricating oil consumption of diesel engines has been increasing its importance to reduce the negative effect of exhausted oil on after treatment devices for exhausted gas. The final purpose of the studies is clarifying the mechanism of the oil consumption and developing the method of its estimation. For the basic study, the mechanism of oil film generation on the piston skirt could be explained by hydrodynamic lubrication in our first and second reports [1, 2]. In this paper, the piston skirt was calculated using the measured piston motion to clarify the effect of the piston motion to the piston skirt oil film behavior.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 4th Report: The Measurement of Oil Pressure Under the Piston Oil Ring -

2006-10-16
2006-01-3440
Clarifying the mechanism of the oil consumption of engines is necessary for developing its estimation method. Oil moves upwards on the piston to the combustion chamber through ring sliding surfaces, ring backs and ring gaps. The mechanisms of oil upwards transport through the ring gaps are hardly analyzed. In this report, oil pressure just under the oil ring was successfully measured by newly developed method to clarify the oil transport mechanism at the ring gap. It was showed that the generated oil pressure pushed up the oil at the ring gap.
Technical Paper

State-of-the-Art; Hino High Boosted Diesel Engine

1993-11-01
931867
In the Japanese heavy duty truck market, demands of improved fuel economy and lighter vehicles to increase load capacity, and further improvements in emissions are constantly increasing. To satisfy these requirements, basically a smaller sized and higher boosted diesel engine is effective, because such an engine has a compact size and light weight, and shows improved fuel consumption due to a relatively lower frictional loss. On the basis of this concept Hino introduced the original EP100 in 1981 as the first Japanese turbocharged and air to air charge-cooled engine. Since then Hino has made many efforts to improve the engines and develop new technologies.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines -1st report: The Effect of the Design of Piston Skirt on Lubricating Oil Consumption-

2005-05-11
2005-01-2169
Decrease of engine lubricating oil consumption is necessary to reduce environmental impact. Usually oil consumption is estimated experimentally at the engine development stage, and it is expensive in terms of both time and cost. Therefore it is essential to develop its calculation method. The purposes of this study are clarifying the mechanism of engine lubricating oil consumption and developing the calculation method for the estimation of oil consumption. In this report, oil film on the piston skirt, which affected on oil volume supplied to the oil ring, was observed. Furthermore the effect of piston skirt design on oil consumption was investigated. Findings showed that the splashed oil on the cylinder liner had much effect on the oil film on the piston skirt hence oil consumption. It was suggested that the splashed oil on the cylinder liner affected on supply oil volume and it should be considered in the calculation of oil consumption.
Technical Paper

Development of Hino Turbocharged Diesel Engines

1984-02-01
840015
A historical review of Japanese turbocharged diesel engines for heavy duty vehicles is described, and newly developed turbocharged diesel engines of HINO are introduced. The design features of these engines include new turbocharging technologies such as highly backward curved impeller for compressor blade, variable controlled inertia charging and waste gate. Laboratory and field test results demonstrated better fuel economy and improved low speed and transient torque characteristics than the predecessors. Several operational experiences, technical analysis and reliability problems are discussed.
Technical Paper

Development of a New Multigrade Engine Oil for Improved Wear Resistance in Heavy Vehicle Diesel Engines-PART II: Development of a 10W-30 Oil for Diesel Engine Use

1985-10-01
852135
The purpose of the investigation presented here was to develop a high quality SAE 10W-30 engine lubricating oil to meet the heavy duty operating conditions of trucks. The operation of their engines is predicted to become more severe in future because of the trend toward higher power output, nore severe regulation of exhaust emissions and noise as well as the increasing demand for better fuel economy. To meet these demands, an improvement of the wear resistance of engine lubricating oil was considered to be the most important aspect for the development of high performance diesel engines in the future. The engine test developed was able to evaluate various experimental oils by observing wear resistance of the valve train which is considered to be one of the most severe tri-bological conditions. The best oils were determined by optimum selection of the amount and type of detergent, ashless dispersant and zinc dithiophosphate.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Technical Paper

Development of Materials for Gear with Superior Impact Wear Resistance

2015-04-14
2015-01-0517
The friction pattern on the chamfers of sleeves and dog gears is a combination of peeling and adhesive wear caused by the formation and propagation of fine cracks. The effect of additional elements on wear were checked by making a test apparatus capable of performing evaluations on test pieces equivalent to those using actual parts. The results showed that the addition of B, Ti-Nb helped improve wear resistance. This is attributed to enhanced toughness and reduced peeling due to the formation of a texture. A 45% reduction in wear was achieved in actual parts tests on steel with added B, Ti-Nb.
Technical Paper

Mechanism of and Fuel Efficiency Improvement by Dimple Texturing on Liner Surface for Reduction of Friction between Piston Rings and Cylinder Bore

2014-04-01
2014-01-1661
Reducing friction between the piston ring and cylinder is an effective way of meeting the demand for lower fuel consumption in vehicle engines. To that effect, the authors have proposed a new and efficient friction reduction treatment for the cylinder. At first glance, this treatment seems similar to typical microtexture treatments, but it is built on a different approach. Through a rig tester, it was confirmed that optimizing the shape of the dimples and the treatment area for the cylinder improves FMEP between the piston ring and the cylinder liner by 17%. This report presents an analysis of the test results to explain the mechanism by which this effect is achieved. Fuel consumption was measured in an actual engine, and a maximum fuel consumption improvement of 3.2% was confirmed after conversion to the Japanese heavy duty vehicle fuel economy standards (Category T2). Lubricating oil consumption, blow-by and durability were also examined.
Technical Paper

Gear Tooth Contact Marking Measurement By Image Processing

1985-11-11
852274
Tooth contact marking of gears is an important quality characteristic that affects tooth strength and gear noise. Tooth contact marking measurement is generally done by painting the tooth surfaces of two meshed gears, rotating the gears and visually observing contact marks. Since it requires much working hours and experience to judge such a measurement, a method of measuring contact tooth markers by image processing has been developed. In this measurement method, the tooth surfaces of rotating gears are continuously observed by a TV camera, and the images are stored in an image memory device. Such quantities as the tooth surface size and tooth surface brightness level are set as initial settings, and the set values are compared with the observed images by a microcomputer to give the results of the measurement.
Technical Paper

Optimum Design of Defroster Nozzle

1992-02-01
920167
Time-consuming experiments have heretofore been required for the development of defroster nozzles. To solve this problem, the authors have quantitatively correlated configuration factors for defroster nozzles and air flow distribution through experiments with simplified models and multiple-regression analysis. Using this approach, it has become possible to derive defrosting patterns from defroster nozzle configuration factors in the design phase.
X