Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a Headway Distance Control System

1998-02-01
980616
This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Development of a Standalone Navigation and Audio-Visual System (Multi-AV System)

1990-02-01
900473
This paper describes the Multi-AV System featured in the 1989 model Nissan Cedric, Gloria, and CIMA. It is composed of a navigation system and an audio-visual system. The former system tracks the location of the vehicle and shows it on a CRT map display. This standalone navigation system has been achieved using a map-matching technique along with a terrestrial magnetic field sensor and wheel speed sensors installed at the wheels. Information on hotels, golf courses, Nissan dealers and other items can be obtained. A CD-ROM is employed as the memory. The audio-visual system consists of a radio, cassette deck, CD player, and TV. The Multi-AV System combines the practicality of a navigation function with the entertainment capabilities of an audio-visual system to satisfy diverse needs.
Technical Paper

Development of a Prediction Method for Passenger Vehicle Aerodynamic Lift using CFD

2008-04-14
2008-01-0801
Increasing expectations for stability at high speed call for the improvement of cars' aerodynamic performance, in particular lift reduction. However, due to styling constraints, traditional spoilers must be avoided and replaced by other solutions like underfloor components. Flow simulation is expected to be a useful tool for lift prediction, but the conventional models used so far did not represent complex geometry details such as the engine compartment and underfloor, and accuracy was insufficient. In the present study, a full vehicle simulation model, including the engine compartment and underfloor details, was used. Other improvements were also made such as optimization of the computational grid and the setting of boundary conditions for reproducing wind tunnel experiments or actual driving, making it possible to predict lift variations due to vehicle geometry changes.
Technical Paper

Thermal Imaging Technology using a Thermoelectric Infrared Sensor

2008-04-14
2008-01-0912
This paper describes a low-cost 48 × 48 element thermal imaging camera intended for use in measuring the temperature in a car interior for advanced air conditioning systems. The compact camera measures 46 × 46 × 60 mm. It operates under a program stored in the central processing unit and can measure the interior temperature distribution with an accuracy of ±0.7°C in range from 0 to 40°C. The camera includes a thermoelectric focal plane array (FPA) housed in a low-cost vacuum-sealed package. The FPA is fabricated with the conventional IC manufacturing process and micromachining technology. The chip is 6.5 × 6.5 mm in size and achieves high sensitivity of 4,300 V/W, which is higher than the performance reported for any other thermopile. This high performance has been achieved by optimizing the sensor's thermal isolation structure and a precisely patterned Au-black absorber that attains high infrared absorptivity of more than 90%.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

2010-10-25
2010-01-2246
Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Technical Paper

Improvement of Vehicle Dynamics Through Braking Force Distribution Control

1992-02-01
920645
The influence on vehicle dynamics of braking force distribution to four wheels has been analyzed by computer simulation and experimentation. The analytical results indicate that a suitable braking force distribution control method can improve handling and stability during braking. A new braking force distribution cintrol strategy,using a steering wheel angle feedforward function and a yaw velocity feedback function,is shown to improve vehicle dynamic behavior.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

An Exploratory Study of the Driver Workload Assessment by Brain Functional Imaging Using Onboard fNIRS

2011-04-12
2011-01-0592
In making driver workload assessments, it is important to evaluate the driver's level of brain activity because the operation of a motor vehicle presumably involves higher-order brain functions. Driving on narrow roads in particular probably imposes a load on the driver's brain functions because of the need to be cognizant of the tight space and to pay close attention to the surroundings. Test vehicles were fitted with a functional near-infrared spectroscopy (fNIRS) system for measuring bloodstream concentrations at 32 locations in the frontal lobe of the participating drivers in order to evaluate their levels of mental activity while driving on narrow roads. The results revealed significant increases in cerebral blood flow corresponding to the perceived workload. This suggests that increases in cerebral blood flow can be used as an effective index for estimating mental workloads.
Technical Paper

Improvement of Practical Electric Consumption by Drag Reducing under Cross Wind

2016-04-05
2016-01-1626
Reducing vehicle fuel consumption has become one of the most important issues in recent years in connection with environmental concerns such as global warming. Therefore, in the vehicle development process, attention has been focused on reducing aerodynamic drag as a way of improving fuel economy. When considering environmental issues, the development of vehicle aerodynamics must take into account real-world driving conditions. A crosswind is one of the representative conditions. It is well known that drag changes in a crosswind compared with a condition without a crosswind, and that the change depends on the vehicle shape. It is generally considered that the influence of a crosswind is relatively small since drag accounts for a small proportion of the total running resistance. However, for electric vehicles, the energy loss of the drive train is smaller than that of an internal combustion engine (ICE) vehicle.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

Independent Control of Steering Force and Wheel Angles to Improve Straight Line Stability

2014-04-01
2014-01-0065
This paper describes a control method to improve straight-line stability without sacrificing natural steering feel, utilizing a newly developed steering system controlling the steering force and the wheel angle independently. It cancels drifting by a road cant and suppresses the yaw angle induced by road surface irregularities or a side wind. Therefore drivers can keep the car straight with such a little steering input adjustment, thus reducing the driver's workload greatly. In this control method, a camera mounted behind the windshield recognizes the forward lane and calculate the discrepancy between the vehicle direction and the driving lane. This method has been applied to the test car, and the reduction of the driver's workload was confirmed. This paper presents an outline of the method and describes its advantages.
Technical Paper

Airflow Measurement Around Passenger Car Models Using a Two-Channel Laser Doppler Velocimeter

1993-03-01
930297
A two-channel LDV system is used to obtain accurate airflow measurements around scale models of passenger cars in wind tunnel tests at the Nissan Research Center. A 2-watt argon-ion laser is employed as the light source. The main optical unit and probe head are connected by optical fibers. The probe head consists of a compact LDV probe with a beam expander and focusing lens with a long focal length can be easily traversed. A new type of signal processor, performing a digital autocorrelation function, is employed to process the Doppler signals. Mean airflow velocities and turbulence intensities are calculated by a micro computer to evaluate the flow fields. The results of preliminary experiments conducted with this system indicate that the system is not only capable of measuring the mean velocity components, including reverse flow, it can also provide accurate estimation of turbulence components.
Technical Paper

Development of a Multi-Link Beam Rear Suspension for Front-Wheel-Drive Cars

1995-02-01
950585
Research into stability at high speed shows that rear suspension characteristics play an important role in vehicle control and stability. In order to improve the cornering limit steering performance and traction of front-wheel-drive vehicles, where the front wheels bear a large proportion of the load and transmit the driving force, and to maintain vehicle stability when decelerating while cornering, rear suspension characteristics are needed that will fully draw out the cornering force capacity of the rear tires. This requirement continues to grow every year, along with demands for higher levels of comfort in passenger cars, including improved ride quality and quietness. It was against this background that the new multi-link beam rear suspension, which is installed in the new Maxima and Sentra models, was developed. This paper describes the aims, construction, characteristics and effects of this new suspension, with focus on vehicle control and stability.
Technical Paper

Application of Background Light Elimination Technique for Lane Marker Detection

2013-03-25
2013-01-0085
An active vision system equipped with a high-speed pulsed light-emitting projector and a high-speed image sensor is proposed and applied to lane marker detection in this paper. The proposed system has the capability to suppress image information obtained from the background light and provides only the image information from the signal light emitted by the projector. This is accomplished by synchronizing image capture with the time of signal light emission. To reduce the power consumption and cost of the system, a relatively low intensity projector is used as the light source. The background illuminance on a bright day can be much higher than that of the signal. To improve the signal-to-background ratio, the signal light is modulated using a pulse width modulation technique. Then, the image is captured using a high-speed camera operating in synchronization with the time the signal light is emitted.
Technical Paper

Correlation Tests Between Japanese Full-Scale Automotive Wind Tunnels Using the Correction Methods for Drag Coefficient

2005-04-11
2005-01-1457
This paper describes results of the correlation tests between several full-scale automotive wind tunnels in Japan. The tests were carried out during FY 2003 by members of the working group for wind tunnel correlation test, which was organized in JSAE Vehicle Aerodynamics Research Committee. Five wind tunnels were selected, i.e., three open test section type wind tunnels and two closed ones. Four test models were selected, i.e., sedan, station wagon, minivan and hatch back car, all of which are current production models. Tests were done with EADE test conditions. Correlation formulas for drag coefficient, which are based on the previous methods by Mercker and Wiedemann [13] and Mercker [3, 10] respectively for open and closed test section type wind tunnels, were used. Also considered were the differences of the boundary layer thickness between five wind tunnels.
Technical Paper

Development of Adaptive Cruise Control With Low Speed Following Capability

2005-04-11
2005-01-1483
This paper presents a newly developed adaptive cruise control system with low-speed following capability that is designed to reduce the driver's workload in low-speed driving such as in congested traffic. This system incorporates a forward-looking sensor with a wider range of view for improved detection of a preceding vehicle in the same lane. It also has a control algorithm that achieves natural vehicle behavior without any disconcerting feeling, as a result of being constructed on the basis of analyses of driving behavior characteristics at low speed like that of congested traffic. Evaluations conducted on a driving simulator have confirmed that the system is effective in reducing the driver's workload.
Technical Paper

Analysis of Vibrational Modes of Vehicle Steering Mechanisms

1971-02-01
710627
An analysis was made of vibration phenomena in the steering system of a vehicle, when the front wheels have some amount of unbalance. The program included vehicle running tests and bench tests to ascertain some of the factors influencing vibration behavior. A mathematical model of the vibration system was simulated on a digital computer in as much detail as possible. The resultant understanding of the dynamics of the system as a whole led to an extensive theoretical analysis of selected key parameters.
Technical Paper

Doppler Radar Speed Sensor for Anti-Skid Control System

1978-02-01
780857
A 24 GHz doppler speed sensor for skid controls has been developed. The microwave sensor is designed using both waveguide and thin-film technologies and assembled into a small integrated unit measuring 27 x 10 x 9 mm. The radar unit and the control circuitry are housed in a waterproof module of 94 x 140 x 78 mm. Part of the casing forms a horn antenna, which radiates a vertically polarized beam incident at 45° on the road surface, when mounted on the vehicle. The error in speed measuring is usually less than 10 percent.
Technical Paper

Development of the N-Type Runflat Tire and Its Evaluation in Vehicle Dynamics

1979-02-01
790668
Judging from viewpoint of automotive safety and more space by eliminating a spare tire, the development of the run-flat tires is important. Many problems relating to weight increase and usability had to be solved in the course of the development of such tires. The “ N ” type run-flat tire, described in this paper, has a simple structure with reinforced side walls and additional beads to fit the rim flanges. Though this tire system brought about a small amount of weight increase, it needs no special part, therefore the conventional road wheels, air valves and tire changers may be used. We have tested and evaluated this tire system equipped with passenger cars as well as on the test machines. Especially vehicle dynamics such as steering, stability and so forth were tested. The test results indicated that this tire system is practical enough.
Technical Paper

Development of an Electronically-controlled Power Steering System

1984-09-01
841198
This Paper describes a computer-controlled power steering system that has been developed and applied to production vehicles. The system provides full power assist at parking speeds, and gradually decreases assistance with increasing vehicle speed to give a normal unassisted “road feel” at highway speeds. The system enables a driver to choose one assistance characteristic among three choices at the flick of a switch, according to the driver's preference and road conditions. A solenoid-operated bypass valve is used to reduce the hydraulic fluid supply to the steering gear, which results in a heavier steering effort. The most suitable valve characteristic curve which corresponds to the increased pressure in the system due to the applied torque is discussed in this study. It is shown that detection of the velocity of steering wheel rotation and extension of the range of characteristics possible are effective ways to ensure good control over the power assistance.
X