Refine Your Search

Topic

Search Results

Journal Article

Consideration about Meshing of Worm Gear Based on MUB (Meshing Under Base-Circle) Theory for EPS

2014-04-01
2014-01-0058
This paper will discuss the stress reduction of the worm wheel for an electric power steering (EPS) system. The research discussed in this paper focused on the worm wheel, the EPS component that determines the maximum diameter of the system. If the stress of the worm wheel could be reduced without increasing in size, it would be possible to reduce the size of the worm wheel and EPS system. In order to reduce the stress of the worm wheel, the conventional design method has extended the line-of-action toward outside of the worm wheel to increase the contact ratio of the gears and these method lead to an increase in the outer diameter. In order to address this issue, past research proposes the basic concept to extend line-of-action toward the inside of the worm wheel. And this new meshing theory was named MUB (Meshing Under Base-circle) theory. In this paper, characteristics of meshing of the gear formed by MUB theory are determined in more detail.
Journal Article

Research on Mechanism of Change in Suspension Transfer Force in Relation to Low-Frequency Road Noise

2015-04-14
2015-01-0667
Cabin quietness is one of the important factors for product marketability. In particular, the importance of reducing road noise is increasing in recent years. Methods that reduce acoustic sensitivity as well as those that reduce the force transferred from the suspension to the body (the suspension transfer force) are used as means of reducing road noise. Reduction of the compliance of the body suspension mounting points has been widely used as a method of reducing acoustic sensitivity. However, there were cases where even though this method reduced acoustic sensitivity, road noise did not decrease. This mechanism remained unclear. This study focused on the suspension transfer force and analyzed this mechanism of change using the transfer function synthesis method. The results showed that the balance between the body's suspension mounting points, suspension bush, and suspension arm-tip compliance is an important factor influencing the change in suspension transfer force.
Journal Article

Study on Analysis of Input Loads to Motorcycle Frames in Rough Road Running

2014-11-11
2014-32-0021
In this study, we developed a simulation method for rough road running condition to reproduce the behaviors of a vehicle body and to precisely estimate the input loads to the frame. We designed the simulation method focusing on a front fork model and a rider model optimized for this type of analysis. In the suspension model development, we conducted detailed measurement of the suspension characteristics on a test bench. Based on the yielded results, the friction force, as well as the spring reaction force and the damping force, was reproduced in the suspension model. The friction of the suspension varies depending on the magnitude of the reaction force associated with bending and this effect was also implemented in the model. Regarding the rider model, the actual behavior of a rider was investigated through the recorded motion video data and used to define the necessary degrees of freedom.
Journal Article

Prediction Method for Water Intrusion into the Engine Air Intake Duct while Running on Flooded Road at the Early Stage of Vehicle Development

2017-03-28
2017-01-1322
Vehicles are required durability in various environments all over the world. Especially water resistance on flooded roads is one of the important issues. To solve this kind of problem, a CFD technology was established in order to predict the water resistance performance of the vehicle at the early development stage. By comparison with vehicle tests on flooded roads, it is clarified the following key factors are required for accurate prediction; the vehicle velocity change, the vehicle height change and the air intake flow rate. Moreover, these three key factors should be appropriately determined from vehicle and engine specification to predict water intrusion for flooded roads at the early stage of development. In this paper, a methodology which determines appropriate analysis conditions mentioned above for flooding simulation from vehicle and engine specification is described. The methodology enables us to determine whether the vehicle provides sufficient waterproofness.
Journal Article

Development of the Next-Generation Steering System (Development of the Twin Lever Steering for Production Vehicle)

2011-04-12
2011-01-0557
Looking back on steering systems in more than a hundred years that have passed since the introduction of the automobile, it can be seen that original method of controlling cars pulled by animals such as horses was by reins, and early automobiles had a single push-pull bar (tiller steering). That became the steering wheel, and an indirect steering mechanism by rotating up and down caught on. While the steering wheel is the main type of steering system in use today, the team have developed the Twin Lever Steering (TLS) system controlled mainly by bi-articular muscles, making use of advancements in science and technology and bioengineering to develop based on bioengineering considerations as shown in Fig. 1. The objective of that is to establish the ultimate steering operation system for drivers. In the first report, the authors reported on results found by using race-car prototypes as shown in Fig. 2.
Journal Article

Application of Electric Servo Brake System to Plug-In Hybrid Vehicle

2013-04-08
2013-01-0697
An electric servo brake system applied for use on electric vehicles was applied for use on plug-in hybrid vehicles in order to achieve fuel-savings together with good brake feel and enhanced operability for plug-in hybrid vehicles. The electric servo brake system is made up of highly accurate braking pressure control that functions cooperatively with regenerative brakes together with a structure in which pedal force is not influenced by braking pressure control. The configuration of these components enabled good braking feel even when the power train was being switched from one drive mode to another. Automated pressurization functions that are intended for plug-in hybrid vehicles and that operate with electric servo brake systems were also developed. These developed functions include stall cooperative control that functions cooperatively with the power train, regenerative coordinate adaptive cruise control, and hill-start assist.
Technical Paper

Development of Hydraulic Servo Brake System for Cooperative Control with Regenerative Brake

2007-04-16
2007-01-0868
A new brake system, able to make efficient use of regenerative braking while maintaining excellent brake feel, has been developed to increase the fuel economy of hybrid vehicles. A hydraulic servo was used as a base to enable mechanical operation of the service brakes; solenoid valves and brake fluid pressure sensors were added to this base to make it possible to control brake line pressure as demanded. The use of a stroke simulator in the hydraulic servo prevents brake feel from being affected by the control of the brake pressure. In addition, high-accuracy brake pressure control that functions cooperatively with the regenerative brakes is enabled, resulting in stable braking effectiveness.
Technical Paper

Control Technology of Brake-by-Wire System for Super-Sport Motorcycles

2010-04-12
2010-01-0080
Super-sport motorcycles have shorter wheelbases than other category motorcycles. Due to this, strong braking occasionally causes large pitching motions to occur, including rear-wheel-lift. In order to reduce such pitching motions and achieve an effective braking force, the authors have developed a brake-by-wire system that uses a pressure sensor to detect the braking input pressure and an electric actuator to variably control the hydraulic pressure. This system makes it possible to precisely control the braking force compared with the previous ABS. Large pitching control was performed by the distribution of a front wheel and a rear-wheel braking forces, CBS (Combined Brake System), by using electronic control, and Brake-by-Wire has been suitable for sport riding. As a result, stable braking performance could be obtained without spoiling the handling characteristics of super-sport motorcycles.
Technical Paper

Development of Electric Power Steering

1991-01-01
910014
A new electric power steering (EPS) was developed which uses an electric motor to provide assistance. It is a system combinning the latest in power electronics and high power motor technologies. The development was aimed at enhancing the existing hydraulic power steering's energy efficiency, driver comfort as well as increasing active stability. This paper describies the overall concept of EPS and outlines the components and control strategies using electronics. The EPS was tested on a front wheel drive vehicle weighing 1000kg in front axle load. The results showed a 5.5% improvement in fuel economy. The EPS has also achieved returnability that gives the driver more moderate feelings matching the vehicle in action as well as the active stability control strategy for high speed driving.
Technical Paper

Development of Multi-use Road Simulator

1993-11-01
931912
A multi-use road simulator for reproducing various road loads on motorcycles and buggies has been developed on a test bench by using computer-controlled hydraulic actuators. The device is controlled by a low-priced personal computer and an interface system with custom software. An unique feature is the capability to simulate loads related to such phenomena as the bottoming of suspension and the movement of a telescopic type front fork on the road.
Technical Paper

Combination of Antilock Brake System (ABS) and Combined Brake System (CBS) for Motorcycles

1996-02-01
960960
Basic requirements for a motorcycle brake system include achieving adequate deceleration and improving motorcycle stability during braking by easy operation. To help realize these requirements, Combined Brake System (CBS) and Antilock Brake System (ABS) for motorcycle have been researched and developed. A new brake system which combines CBS with ABS has been recently researched and installed on a test motorcycle. The results of braking tests showed high performance in deceleration and good braking feeling especially during ABS actuation.
Technical Paper

R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs

2005-10-24
2005-01-3828
Ultra-low energy consumption and ultra-low emission vehicle technologies have been developed by combining petroleum-alternative clean energy with a hybrid electric vehicle (HEV) system. Their component technologies cover a wide range of vehicle types, such as passenger cars, delivery trucks, and city buses, adsorbed natural gas (ANG), compressed natural gas (CNG), and dimethyl ether (DME) as fuels, series (S-HEV) and series/parallel (SP-HEV) for hybrid types, and as energy storage systems (ESSs), flywheel batteries (FWBs), capacitors, and lithium-ion (Li-ion) batteries. Evaluation tests confirmed that the energy consumption of the developed vehicles is 1/2 of that of conventional diesel vehicles, and the exhaust emission levels are comparable to Japan's ultra-low emission vehicle (J-ULEV) level.
Technical Paper

Performance of Antilock Brakes with Simplified Control Technique

1983-02-01
830484
The four-wheel controlling antilock brake system is considered as an effective safety device because of its capability to help a driver to maintain vehicle stability and steerability during panic braking even on a slippery road surface. This report deal with a simplified control technique which simultaneously controls right and left wheels on each front or rear axle. Both front wheels are controlled in response to a signal from the front wheel with the least slip, while both rear wheels are controlled in response to a signal from the rear wheel that has the greatest slip. A series of tests proved that this technique ensures vehicle steering ability even during panic braking. On a gravel and other rough roads, this system provided shorter stopping distance compared to other four-wheel antilock systems. It has been generally assumed that stopping distance extension on such roads is only one disadvantage of the four-wheel antilock brake system.
Technical Paper

Four Wheel Steering System with Rear Wheel Steer Angle Controlled as a Function of Steering Wheel Angle

1986-02-01
860625
This paper discusses the desired steer angle characteristics of rear wheels in the new concept of four wheel steering system in which the rear wheels are controlled as a function of the steering wheel angle in a manner that the rear wheels are steered in the same direction as the front wheels when the steering wheel angle is kept within a small range while the rear wheels are steered in the opposite direction to the front in the case the steering wheel angle is steered over a larger range. This paper also indicates the basic principle of the four wheel steering system and lists items for consideration in determining the function, and then presents a variety of effects the new steering system produces on operating performances based upon a series of proving ground tests.
Technical Paper

Influence of Antilock Brakes on Motorcycle Braking in a Turn

1989-09-01
891773
A theoretical and experimental investigation of the effects of antilock braking (ALB) on motorcycle braking in a turn (BIT) is described. The analyses involved computer simulation of the dynamic interaction among rider, motorcycle, ALB, and roadway during BIT maneuvers; and instrumented full scale BIT tests with expert and novice riders. The analyses and full scale tests used an example all mechanical, independent front and rear ALB system. The results showed that ALB can help maintain motorcycle stability in straightline and gradual turns at high and excessive brake force levels. In more severe turns, the motorcycle can capsize at low brake force levels, below those which are typically needed to trigger ALB operation. As a consequence, from a fundamental standpoint, contemporary conventional ALB systems cannot be considered to influence or improve motorcycle stability during limit braking in moderate or near limit turns.
Technical Paper

A Vibration Transfer Reduction Technique, Making Use of the Directivity of the Force Transmitted from Road Surface to Tire

2000-03-06
2000-01-0096
While there has been an empirical rule telling suspension designers that a slight rearward inclination of the wheel travel locus could improve ride harshness performance, there has not been any quantitative proof on it, to the extent of authors' knowledge. The authors planned to analyze the phenomenon by quantitatively measuring the force transmission via suspension, to find out that the amplitude of longitudinal force transmission to the sprung mass changes significantly depending on the above inclination angle. Further investigation has lead to a conclusion that the force transmission from ground to tire has a sharp directivity. And that the relationship between this direction and the direction of wheel travel is a dominant factor, which decides the magnitude of longitudinal force transmission to the sprung mass. In order to make use of the finding, the optimal wheel center locus inclination in side view has been studied, to minimize the longitudinal force transmission.
Technical Paper

Development of Advanced Brake System for Small Motorcycles

2015-09-27
2015-01-2680
Combined Brake System for small motorcycles has been developed. In small motorcycles, some models have a hydraulic disc brake both in the front and rear wheels but many of them have a hydraulic disc front brake and a mechanical drum rear brake. Accordingly, it was necessary to develop a new system to link the hydraulic system with the mechanical system to allow an application of Combined Brake System to these models. In this paper, a CBS having a new configuration is described where a disc brake and a drum brake are linked in a simple lever structure of an input force distributor, and an inhibitor spring at the foot pedal. With this mechanism equipped, the distribution of brake forces is controlled. When a large input force is applied, a large proportion of brake force is applied to the front brake to obtain adequate deceleration. When a mild input force is applied, which is frequently operated, the brake force proportion is large in the rear compared to the front.
Technical Paper

The Development of Brake Feel with Variable Servo Ratio Control

2015-09-27
2015-01-2696
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
Technical Paper

Research on Variable-Speed Brake Control in Multiple-Collision Automatic Braking

2015-04-14
2015-01-1410
According to the North American National Automotive Sampling System Crashworthiness Data System (NASS/CDS), approximately one-half of all accidents during driving are of the secondary collision pattern in which the collision event involves the occurrence of secondary collision. Accidents involving impact to a stopped vehicle (chain-reaction collisions) have increased to approximately 3% of all accidents in North America, and although the rate of serious injury is low, cases have been reported of accidents in which cervical sprain occurs as an after-effect[1]. In order to mitigate these circumstances, research has been conducted on systems of automatic braking for collisions. These systems apply brakes automatically when a first collision has been detected in order to avoid or lessen a second collision. Research on automatic collision braking systems, however, has not examined the multiple collisions parked [1, 2].
Technical Paper

A Study of Tire Characteristics and Vehicle Performance on Snow-covered Roads

2015-04-14
2015-01-1522
Vehicle dynamic performance on snow-covered roads is one aspect of performance that is influenced by tire performance. Much research concerning a vehicle's performance on snow-covered roads has focused on being directed to vehicle control technology that increases control when the tire-slip ratio is larger, such as anti-lock braking systems (ABS) and electronic stability control (ESC). There has been little research, regarding performance when the slip ratio on a snow- covered road is smaller. We studied the friction performance of tires on snow-covered roads to predict vehicle performance within the grip range. We propose a technology for predicting vehicle performance within the small slipangle range and also verify its effectiveness. We established the tire characteristics that assure the grip range on a snow-covered road using performance indicators.
X