Refine Your Search

Topic

Author

Search Results

Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Journal Article

Evaluation of the Performance of a Boosted HCCI Gasoline Engine with Blowdown Supercharge System

2013-10-15
2013-32-9172
HCCI combustion can realize low NOx and particulate emissions and high thermal efficiency. Therefore, HCCI combustion has a possibility of many kinds of applications, such as an automotive powertrain, general-purpose engine, motorcycle engine and electric generator. However, the operational range using HCCI combustion in terms of speed and load is restricted because the onset of ignition and the heat release rate cannot be controlled directly. For the extension of the operational range using either an external supercharger or a turbocharger is promising. The objective of this research is to investigate the effect of the intake pressure on the HCCI high load limit and HCCI combustion characteristics with blowdown supercharging (BDSC) system. The intake pressure (Pin) and temperature (Tin) were varied as experimental parameters. The intake pressure was swept from 100 kPa (naturally aspirated) to 200 kPa using an external mechanical supercharger.
Journal Article

Full Vehicle Thermal Prediction by Identification Approach from Test Results

2015-04-14
2015-01-0441
With demands for enhanced environmental performance such as fuel economy, the tendency has been to reduce the amount of wind introduced to the engine room to reduce drag. Meanwhile, exhaust gas temperatures are increasing in order to reduce emissions concentrations. As a result, the temperature environments for parts inside the engine room and underfloor parts are becoming harsher, and accurately understanding the temperature environments of parts is crucial in determining Engine room component layout during vehicle development and applying effective thermal countermeasures. Computational fluid dynamics (CFD) are effective for understanding complex phenomena such as heat generation and cooling. However, this paper reports the development of a method for accurately calculating the vehicle temperature distribution through identification from test results.
Journal Article

Effect of Surface Heat Treatment on Corrosion-Related Failure of the Suspension Spring

2015-04-14
2015-01-0518
In this research, a new wire material made using surface-reforming heat treatment was developed in order to enhance the corrosion fatigue resistance of suspension springs. The aim of surface reforming is to improve hydrogen embrittlement characteristics through grain refinement and to improve crack propagation resistance by partial softening of hardness. The grain refinement method used an α'→γ reversed transformation by rapid short-term heating in repeated induction heating and quenching (R-IHQ) to refine the crystal grain size of SAE 9254 steel spring wire to 4 μm or less. In order to simultaneously improve the fatigue crack propagation characteristics, the possibility of reducing the hardness immediately below the spring surface layer was also examined. By applying contour hardening in the second IHQ cycle, a heat affected zone (HAZ) is obtained immediately below the surface.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
Journal Article

Development of State of the Art Compact and Lightweight Thermoelectric Generator Using Vacuum Space Structure

2015-04-14
2015-01-1691
Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

2015-04-14
2015-01-1329
A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Journal Article

Development of a New Pressure Measurement Technique and PIV to Validate CFD for the Aerodynamics of Full-scale Vehicles

2016-04-05
2016-01-1623
In the early stages of aerodynamic development of commercial vehicles, the aerodynamic concept is balanced with the design concept using CFD. Since this development determines the aerodynamic potential of the vehicle, CFD with high accuracy is needed. To improve its accuracy, spatial resolution of CFD should be based on flow phenomenon. For this purpose, to compare aerodynamic force, pressure profile and velocity vector map derived from CFD with experimental data is important, but there are some difficulties to obtain pressure profile and velocity vector map for actual vehicles. At the point of pressure measurement for vehicles, installation of pressure taps to the surface of vehicle, i.e., fuel tank and battery, is a problem. A new measurement method developed in this study enables measurement of surface pressure of any desired points. Also, the flexibility of its shape and measuring point makes the installation a lot easier than the conventional pressure measurement method.
Journal Article

Application of Rapid Heat and Cool Molding to High Strength Outer Parts without Painting Treatment

2016-11-08
2016-32-0024
Glass fiber reinforced plastic of polyamide is applied as one of the materials used for the high strength exterior parts of a motorcycle, such as a rear grab rail or a carrier, to which both strength and good exterior appearance are required. However, Glass Fiber reinforced Polypropylene (PPGF), which is relatively inexpensive material, has a property that the contained glass fibers are prone to be exposed at the surface and, therefore, the requirements for good appearance are hardly met by using PPGF. In this study, Heat and Cool molding method (H&C molding) was employed to realize a cost reduction by using PPGF yet without applying painting process, and the established method was applied to mass production while fulfilling the requirements for a good exterior appearance. In H&C molding, the metal molds are heated up by steam and cooled down by water after molding.
Journal Article

Development of New Hydrogen Fueling Method for Fuel Cell Motorcycle

2017-03-28
2017-01-1184
A new hydrogen fueling protocol named MC Formula Moto was developed for fuel cell motorcycles (FCM) with a smaller hydrogen storage capacity than those of light duty FC vehicles (FCV) currently covered in the SAE J2601 standard (over than 2kg storage). Building on the MC Formula based protocol from the 2016 SAE J2601 standard, numerous new techniques were developed and tested to accommodate the smaller storage capacity: an initial pressure estimation using the connection pulse, a fueling time counter which begins the main fueling time prior to the connection pulse, a pressure ramp rate fallback control, and other techniques. The MC Formula Moto fueling protocol has the potential to be implemented at current hydrogen stations intended for fueling of FCVs using protocols such as SAE J2601. This will allow FCMs to use the existing and rapidly growing hydrogen infrastructure, precluding the need for exclusive dispensers or stations.
Journal Article

Prediction Method for Water Intrusion into the Engine Air Intake Duct while Running on Flooded Road at the Early Stage of Vehicle Development

2017-03-28
2017-01-1322
Vehicles are required durability in various environments all over the world. Especially water resistance on flooded roads is one of the important issues. To solve this kind of problem, a CFD technology was established in order to predict the water resistance performance of the vehicle at the early development stage. By comparison with vehicle tests on flooded roads, it is clarified the following key factors are required for accurate prediction; the vehicle velocity change, the vehicle height change and the air intake flow rate. Moreover, these three key factors should be appropriately determined from vehicle and engine specification to predict water intrusion for flooded roads at the early stage of development. In this paper, a methodology which determines appropriate analysis conditions mentioned above for flooding simulation from vehicle and engine specification is described. The methodology enables us to determine whether the vehicle provides sufficient waterproofness.
Journal Article

Investigation of Spray Evaporation and Numerical Model Applied for Fuel-injection Small Engines

2008-09-09
2008-32-0064
The purpose of this research is to develop a prediction technique that can be used in the development of port fuel-injection (hereinafter called PFI) gasoline engines, especially for general purpose small utility engines. Utility engines have two contradictory desirable aspects: compactness and high-power at wide open throttle. Therefore, applying the port fuel injector to utility engines presents a unique intractableness that is different from application to automobiles or motorcycles. At the condition of wide open throttle, a large amount of fuel is required to output high power, and injected fuel is deposited as a wall film on the intake port wall. Despite the fuel rich condition, emissions are required to be kept under a certain level. Thus, it is significant to understand the wall film phenomenon and control film thickness in the intake ports.
Journal Article

Quantitative Representations of Aerodynamic Effects on Handling Response and Flat Ride of Vehicles

2012-04-16
2012-01-0445
The effects of aerodynamic coefficients on handling response and flat ride were quantified. For handling response, the aerodynamic effect was quantified by analysis with linear representation and a two-wheel simulation model, using aerodynamic coefficients obtained from a full scale car wind tunnel. The correlation of aerodynamic coefficients and handling response with driving feel was also ascertained. Aerodynamic yaw moment and side-force were also converted to equivalent front and rear lift to standardize aerodynamic indexes and improve aerodynamic development efficiency. For flat ride, steady and unsteady aerodynamic effects were quantified by analysis with a two-degree-of-freedom mass-spring-damper simulation model and aerodynamic coefficients obtained from a 35% scale model wind tunnel and towing tank test. Unsteady aerodynamic force occurrence mechanism was ascertained by unsteady CFD using dynamic mesh.
Technical Paper

Development of Hydraulic Servo Brake System for Cooperative Control with Regenerative Brake

2007-04-16
2007-01-0868
A new brake system, able to make efficient use of regenerative braking while maintaining excellent brake feel, has been developed to increase the fuel economy of hybrid vehicles. A hydraulic servo was used as a base to enable mechanical operation of the service brakes; solenoid valves and brake fluid pressure sensors were added to this base to make it possible to control brake line pressure as demanded. The use of a stroke simulator in the hydraulic servo prevents brake feel from being affected by the control of the brake pressure. In addition, high-accuracy brake pressure control that functions cooperatively with the regenerative brakes is enabled, resulting in stable braking effectiveness.
Technical Paper

Establishment of Engine Lubrication Oil Pressure and Flow Rate Distribution Prediction Technology Using 3D-CFD and Multi Body Dynamics

2009-04-20
2009-01-1349
To develop ideal oil circuits, it was necessary to establish technology that would accurately predict lubrication oil pressure and flow rates. Therefore, the oil flow rate was predicted by applying load fluctuations, calculated using multi body dynamics, to an oil film model. In addition, the pressure loss of complex oil passages was obtained using 3-dimensional computational fluid dynamics (hereafter, “3D-CFD”). Furthermore, the pressure loss of the oil pressure switching valves and other parts that are difficult to predict using 3D-CFD were measured as single parts, and these results were linked with one-dimensional internal flow analysis to develop a prediction method for lubrication oil pressure and flow rate distributions. Verification tests were ultimately performed using a completed engine, and the results confirmed that this simulation method accurately reproduces the oil pressure and oil flow rate in each part.
Technical Paper

Development of Compact Fuel Pump Module for Motorcycles

2008-09-09
2008-32-0039
A compact, low-cost fuel pump module has been developed for use in motorcycles with a small-displacement engine. Various considerations are given to make the module as compact as possible. The pump motor, which is one of the major component parts, is down-sized specifically for applications to small-displacement engines. The pressure regulator uses a simple construction consisting only of a ball and a spring without a diaphragm. Especially noteworthy is that with the volume reduced by approximately 40% from the conventional pressure regulator while using the construction that reduces self-excited vibrations caused by fuel pressure pulsations, the pressure regulator contributes significantly to the down-sizing and cost reduction of the module. Furthermore, the down-sized module remarkably reduces the size of fuel pump mount surface, allowing a modification from the flat-surface sealing to the radial sealing.
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Technical Paper

Control Technology of Brake-by-Wire System for Super-Sport Motorcycles

2010-04-12
2010-01-0080
Super-sport motorcycles have shorter wheelbases than other category motorcycles. Due to this, strong braking occasionally causes large pitching motions to occur, including rear-wheel-lift. In order to reduce such pitching motions and achieve an effective braking force, the authors have developed a brake-by-wire system that uses a pressure sensor to detect the braking input pressure and an electric actuator to variably control the hydraulic pressure. This system makes it possible to precisely control the braking force compared with the previous ABS. Large pitching control was performed by the distribution of a front wheel and a rear-wheel braking forces, CBS (Combined Brake System), by using electronic control, and Brake-by-Wire has been suitable for sport riding. As a result, stable braking performance could be obtained without spoiling the handling characteristics of super-sport motorcycles.
Technical Paper

Modeling the Sound Source of an Intake and Predicting the Intake Sound Pressure Level for a Motorcycle

2003-09-15
2003-32-0058
In order to accurately estimate the intake sound pressure level, it is important to improve the accuracy of the air cleaner simulation model and precisely estimate the sound source of the intake. It has been confirmed that the modeling accuracy of an air cleaner can be improved by considering the vibro-acoustic coupling. Meanwhile, the sound source of the intake depends not only on the engine specifications, but on the intake system and even the exhaust system design. In this reported example, since it is difficult to estimate the sound source of the intake only by calculation, due to the aforementioned reasons, actual measurements were carried out to define the sound source. The method is such that the sound source is modeled by acoustic impedance and volume velocity in the engine, and the acoustic impedance is measured using an impedance tube. Then, the sound pressure at the intake opening is measured.
Technical Paper

Development of Hollow, Weld-able Die-Cast Parts for Aluminum Motorcycle Frames

2003-09-15
2003-32-0055
Using sand cores, the weld-able, hollow die-cast parts have been developed. For casting, the transition flow filling method is applied to reduce gas containment and to minimize damages to the core. In designing the products, the newly developed core stress prediction system by melt pressure distribution and the newly developed in-product gas containment prediction system have been applied. The hollow die-cast frame made by the new method attains a 30% increase in rigidity and 1kg reduction of weight.
X