Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Study of TWC in NOx Adsorber Catalyst System for Gasoline Direct Injection Engine

2001-03-05
2001-01-1300
Extensive research and development has been performed to develop the NOx-adsorber catalytic system, which would make Mitsubishi vehicles powered by the gasoline direct-injection (GDI™) engines comply with European Stage 4 emissions regulations. This NOx-adsorber catalytic system is a three-brick configuration, consisting of a three-way catalyst in the front (the front catalyst) and the rear catalytic converter, composed of a new NOx-adsorber catalyst and a conventional three-way catalyst (TWC). In the present research work, a special effort has been made to define the required performance of the front catalyst, particularly with HC reduction efficiency at the cold start, the steady-state leaner A/F and the transient phase of the A/F from leaner to stoichiometric. For HC reduction, it has been found that platinum (Pt) had the highest HC efficiency.
Technical Paper

A Diesel Oxidation Catalyst for Exhaust Emissions Reduction

1993-11-01
932958
The authors used a mass spectrometer to determine an SOF reduction mechanism of a diesel oxidation catalyst. The results indicate that SOF reduction lies in the catalytic conversion of high molecular organic matter to low molecular organic matter. And unregulated emissions are also reduced through this conversion. It is also found that the SOF reduction performance is highly dependent up on the condition of the wash coat. There is some limitation to improving diesel oxidation catalyst performance because of the sulfur content found in diesel fuel. Finally, the authors have determined what we think are the specifications of the presently best catalytic converter.
Technical Paper

Optimization of Catalytic Converter Location Achieved with a Curve Catalytic Honeycomb Substrate

1994-03-01
940743
A new type of catalytic converter has been developed for the coming TLEV (Transitional Low Emission Vehicle) standards. It is a “Front Curve Catalytic Converter (FCCC)” using a curved cordierite ceramic honeycomb substrate. During this development, an optimum location and volume of the front curve catalytic converter were determined from the view points of thermal deterioration of the catalyst and hydrocarbon conversion performance. Based on CAE (Computer Aided Engineering) analysis, the best curvature radius of the substrate was selected to minimize a pressure drop of the front curve catalytic converter. The emission conversion and light-off performances of the front curve catalytic converter were compared with a conventional straight design. A series of durability tests; hot vibration, engine dynamometer and vehicle fleet tests were also conducted to confirm the reliability of the new front curve catalytic converter.
Technical Paper

Small Engine - Concept Emission Vehicles

1971-02-01
710296
Three Japanese automobile manufacturers-Mitsubishi Motors Corp., Nissan Motor Co., Ltd., and Toyo Kogyo Co., Ltd.-have been making efforts over the past three years to design and develop effective thermal reactor-exhaust gas recirculation and catalytic converter systems suitable for small engines. The work is being done by members participating in the IIEC (Inter-Industry Emission Control) Program, and the exhaust emission levels of the concept vehicles developed by these companies have met the goal established by the IIEC Program at low mileage. Each system, however, has a characteristic relationship between exhaust emission level and loss of fuel economy. Much investigation is required, particularly with respect to durability, before any system that will fully satisfy all service requirements can be completed. This paper reports the progress of research and development of the individual concept vehicles.
X