Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Journal Article

Impact of Boundary Lubrication Performance of Engine Oils on Friction at Piston Ring-Cylinder Liner Interface

2014-10-13
2014-01-2787
To explore the measures that can be used to improve the fuel economy of internal combustion engines, we investigated how friction at the piston ring-cylinder liner interface is influenced by the boundary lubrication performance of engine oils. We formulated several engine oils with varying boundary lubrication performance and tested them for ring-liner friction by using a floating liner friction tester. We used friction modifiers (FMs) to modify the boundary lubrication performance of engine oils. We found that ring-liner friction is well correlated with the friction coefficients in boundary lubrication regimes when measured by a laboratory friction tester. We also found that the impact of the boundary lubrication performance of engine oils was emphasized in low viscosity engine oils. It makes it possible for improved boundary lubrication performance to inhibit or overcome the viscosity reduction-induced increase of friction energy.
Technical Paper

Evaluation of Engine Oil Deterioration Using a Comb-Shaped Electrode

2016-10-17
2016-01-2317
At present, the lifetime of engine oil is judged by chemically measuring the changes in its properties while running of an actual vehicle or by setting the standards for its replacement cycle in terms of travel distance and time. The advantage of the former is that the lifetime can be judged with a high degree of reliability, but its disadvantage is that information on the lifetime is difficult for users to obtain. The problem with the latter is that the standards are unreliable. Therefore, users need a simple and reliable method to evaluate the degradation of engine oil so they can determine the appropriate time to change it. We examined the possibility of evaluating the lifetime of engine oil by measuring its capacitance using a comb-shaped electrode. As a result, we found that the capacitance of four types of engine oil collected at markets tended to decrease during the initial stage of degradation and then increased in the later stage.
Technical Paper

Steric Effects on Tribochemical Reactivity in Detergent-Containing Lubricants under Nanoconfinement

2017-10-08
2017-01-2347
Modern formulation in a wide variety of lubricants including engine oils and transmission fluids is designed to control friction through film-forming tribochemical reactions induced by the functional additives mixtures. Although many cases on the synergistic or antagonistic effects of additives on friction have been reported, their mechanisms are poorly understood. This study focused on the influences of metallic detergents on tribochemical reactions. We examined the mechanical properties of detergent-containing lubricants confined at a single-asperity contact and their contributions to tribochemical phenomena. We found that detergents enlarged the confinement space required for generating repulsive force and shear resistance. This means that these detergents provide steric effects under nanoconfinement at interfacial contacts.
Technical Paper

JCMAS New Grease Specifications for Construction Machinery

2006-10-31
2006-01-3504
Since construction machinery manufacturers recommend various brands and types of greases for their machinery, customers would benefit from a standardized grease which can be used in all construction machinery. Furthermore, construction machinery manufacturers have many experiences of field problems caused by commercially available and commonly used EP Lithium greases. Therefore, the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA) has developed a new grease specification called “Japan Construction Mechanization Association Specification (JCMAS) GK,” for construction equipment. The JCMAS GK includes requirements for National Lubrication and Grease Institute (NLGI) No. 1 and No. 2 consistency grades. The JCMAS GK greases have enough lubricating properties for periodical grease fitting of most construction machines, hydraulic excavators, bulldozers and wheel loaders. The JCMAS GK greases are applicable from -20 to +130 degrees Celsius.
Technical Paper

The Development of Lubricating Oils for Rotary Racing Engines

1992-10-01
922375
In order to achieve the highest power output and lowest fuel consumption for the rotary engine in endurance race such as Le Mans, two types of lubricating oils were developed by conducting a single - rotor engine test at the rotational speed of 7500 rpm under full load. One was the engine oil for the lubrication of the combustion chamber. The other was a so - called system oil for lubrication of the engine system outside the combustion chamber. The conclusions obtained from the development are as follows: 1) Engine oil for the combustion chamber The engine oil greatly influences spitback phenomenon1) which can cause rotary engine trouble in an endurance race. The spitback phenomenon is decreased by the decrease of carbonaceous deposit and ash in the apex seal grooves.
Technical Paper

The Development of PAG Refrigeration Lubricants for Air Conditioner with HFC134a

1995-02-01
951052
In order to clarify the relationship between the chemical structure of PAG (polyalkylene glycol) and the performance characteristics as the refrigeration lubricants used for HFC134a, performance tests were conducted using PAGs with different end groups and alkylene oxide chains in the presence of HFC134a. Newly developed dimethyl ether capped PAGs having more than 70 mol.% PO (propylene oxide) to less than 30 mol.% EO (ethylene oxide) as a monomer ratio were the most preferable of all PAGs tested. The refrigeration lubricants using these PAGs have been successfully introduced into the market for mobile air conditioning systems with refrigerant HFC134a.
Technical Paper

Research on Low-Friction Properties of High Viscosity Index Petroleum Base Stock and Development of Upgraded Engine Oil

1995-02-01
951036
High viscosity index(HVI) petroleum base stock, with excellent temperature-viscosity characteristics, oxidation resistance, and low-evaporation properties, offers advantages as the base stock for high fuel economy engine oils, particularly because of its low-friction properties in the boundary and/or “E.H.L (Elastohydrodynamic Lubrication)” area due to its rheological characteristics. This research evaluated HVI base stock's low-friction properties. Upgrading the oil from 5W-30 to 5W-20 was also investigated. The friction properties of the HVI base stock were measured by a unit friction platform. The results show a 28% reduction in friction coefficient compared with the conventional, solvent refined oil, which is attributable to the high-pressure viscosity of the base oil.
Technical Paper

Development of New Hydraulic Fluids Specifications for Construction Machinery

2005-11-01
2005-01-3574
Hydraulic fluid (HF) specifications for mobile construction equipment called JCMAS HK and HKB have been established by the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA). The specifications are designated by two viscosity categories of single grade and multigrade. Each category has ISO viscosity grade (VG) 32 and 46. The JCMAS HK oils are recommended for use in hydraulic systems designed at pressure up to 34.3MPa(5000psi) and to heat hydraulic fluid up to 100 °C. These oils also provide wear control, friction performance, oxidation and rust protection, seal swell control and filterability performance. Two piston pump test procedures were developed to evaluate lubricating performance of these oils under high pressure conditions. The JACMAS HKB oils are classified as environmentally friendly oils due to the additional requirement for biodegradability.
Technical Paper

Frictional and Wear Properties of Diamond-Like Carbon Films with Lubricant Additives

2023-04-11
2023-01-0871
Diamond-Like Carbon (DLC) is a promising engine material for reducing friction and wear on sliding parts. By contrast, MoDTC lubricant additives are known to promote the wear of a-C:H films. However, the mechanism that promotes wear and the formation of tribofilms on DLC parts when in contact with molybdenum-based lubricant additives has not been sufficiently studied. The purpose of this research is to determine the wear promotion mechanism and formation of tribofilm on DLC by lubricant additives by comparing friction and wear properties. We conducted friction and wear tests using a tribometer with DLC (ta-C, ta-C:H, a-C, and a-C:H) blocks, FC250 (cast iron) rings, and oils containing lubricant additives (MoDTC, MoDTP, and Mo without DTC ligand) by observing and analyzing the sliding surfaces of specimens. No wear was observed for any of the DLCs (ta-C, ta-C:H, a-C:H, and a-C) in combination with oils containing MoDTP or Mo without DTC ligands.
Technical Paper

Piston Detergency and Anti-Wear Performance of Non-Phosphorus and Non-Ash Engine Oil

2019-01-15
2019-01-0021
The deposition of ash derived from engine oil on the surface of diesel particle filters (DPF) has recently been reported to degrade the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst, reducing the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus, non-ash engine oil (NPNA) that does not contain metal-based detergents or zinc dialkyldithiophosphate (ZnDTP). Various engine tests were performed, and we confirmed that under normal running conditions, the NPNA oil had a sufficiently high piston detergency and wear resistance-two important requirements for engine oil-to meet current American and Japanese standards. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

Lubricants Formulation Technology for Fuel Saving Performance in Automatic Transmissions

2015-09-01
2015-01-2037
The use of Automatic Transmission Fluids (ATFs) with lower viscosity and excellent anti-shudder durability for wet clutch system will be effective for improving fuel saving performance in automatic transmissions. In this study, two ATF formulation techniques were examined. The first trial formulation is to improve fatigue life in gear components even if a lower viscosity ATF is used. The second one is to improve anti-shudder durability for wet lock-up clutch system in AT units. As to fatigue life performance, the relation between molecular weight of Viscosity Index Improver (VII) and film formation property in EHL contact regions were experimentally investigated. ATFs containing VIIs with lower molecular weight tend to increasing EHL film thickness, resulting in a longer gear pitting fatigue life. Calcium detergents and ashless friction modifiers in ATFs were found to give a great impact on the anti-shudder performance.
Technical Paper

The performance of diesel engine oil using ashless anti-wear additive and detergent

2023-09-29
2023-32-0027
To comply with increasingly strict emission regulations, diesel vehicles are equipped with Diesel Particulate Filters (DPF) to capture fine particulate matter (PM) from exhaust gas. However, due to the limited capacity of DPF to capture soot, periodic regeneration processing is required to burn it off. The ash created by metal-based additives in engine oil accumulates in DPF, leading to issues such as increased regeneration frequency and decreased fuel efficiency. To solve this problem, researchers have developed diesel engine oil with reduced ash content. However, the authors are taking it a step further and developing a diesel engine oil without metal-based detergents and anti-wear additives, for even more significant environmental impact reduction. This paper describes the development of an ashless engine oil with DH-2 performance, the effects of the developed engine oil on DPF, and the results of engine and actual field tests.
X