Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Influence of Increasing Amount of Attapulgite on the Performance Properties of Cu-Free Brake-Pads

2020-10-05
2020-01-1601
Copper is almost inevitable functional filler in the brake-material and efforts to replace it are continuing since it is now known as a hazard to the aquatic life. It is always desirable to search for ingredients for Cu-free brake-pads, which will be beneficial for friction-related properties and especially fade resistance. Attapulgite, is a mineral which was proven to be an excellent substitute for asbestos in brake-pads long back. However, hardly anything in details is reported on its exact role in controlling tribo-properties of friction materials (FMs). It was of interest, if it can be helpful in enhancing the performance of Cu-free FMs. Hence, in this work a series of brake-pads (five types) was formulated and developed with increasing amount of attapulgite (0, 5, 10 and 15 wt. %) by compensating with inert barite particles in Cu-free FMs. The parent composition was fixed and instead of Cu powder, 10 wt.% stainless steel powder was used.
Technical Paper

Eco-Friendly Brake-Pads Using Ferritic Stainless-Steel Particles of Varying Sizes: Influence on Performance Properties

2020-10-05
2020-01-1602
Metallic particles in brake-friction materials (FMs) play a vital role in improving mainly strength, friction level, thermal conductivity and hence resistance to fade during braking operations. Although Copper was the most efficient and popular metallic ingredient in FMs, it is being phased out because of its proven threat to the aquatic life in the form of wear debris. Hardly any successful efforts are reported in open literature barring few on in the authors’ laboratory. It is well-known that the size and shape of particles affect the performance of composites apart from their type, concentration, etc. In this paper, Ferritic stainless steel (SS 434) particles were selected as a theme ingredient in two forms, first particulate (SSP) with two sizes, larger (30-45 micron) and smaller (10-20 micron) and also in the form of swarf. The aim was to investigate the size and shape effect of these ingredients when used to manufacture the brake-pads on the performance properties.
Technical Paper

Controlling the Performance of Copper-Free Brake-Pads by Varying Size of Graphite Particles

2020-10-05
2020-01-1604
Graphite plays a crucial role in friction materials, since it has good thermal conductivity, lubricity and act as a friction modifier. The right type, amount, shape, and size of the particles control the performance of the brake-pads. The theme of the study was investigating the influence of size of graphite particles (having all other specifications identical) on performance properties of brake-pads containing graphite particles in the average size of 60 μm, 120 μm, 200 μm and 400 μm. Physical, mechanical and chemical characterization of the developed brake-pads was done. The tribological performance was studied using a full- scale inertia brake dynamometer following a Japanese automobile testing standard (JASO C406). Tribo-performance in terms of fade resistance, friction stability and wear resistance were observed best for smaller graphite particles. It was concluded that smaller size serves best for achieving best performance properties barring compressibility.
Technical Paper

Influence of Particle Size of Graphite on Performance Properties of Friction Composites

2007-10-07
2007-01-3967
Non-Asbestos Organic (NAO) brake- material research has been significant in the last decade in an attempt to replace the conventional semi-metallic and asbestos based materials. Influence of ingredients in this multi-ingredient (generally 10-25 in different proportions) system on performance properties, however, is still not thoroughly researched area because of complexity involved and needs intensive efforts to understand this aspect. Graphite is one of the most important and almost inevitable ingredients in friction materials. A wide variety of graphite varying in origin, particle size, crystallinity, thermal conductivity etc. is used by the industry. An in-depth and systematic study on the influence of size of graphite on tribo-performance, however, is not available.
Technical Paper

Extrapolation of Service Load Data

2009-05-13
2009-01-1619
Fatigue design has to account for the scatter of component geometry, material behavior and loading. Scatter of the first two variables is mainly due to manufacturing and material sourcing. Loading on the other hand depends decisively on operating conditions and customer usage. Loading is certainly most difficult to determine. Tests on proving ground or even long-term real time measurements are used to obtain actual load time histories. Because of the costs of measurements and safety measure, real-time measurements are used exceptionally to gain changes in the usage profile. In this paper, an attempt has been made to find the difference in the extrapolated data to the actual data. A comparison has been made between the actual road distance of 2000 km to the extrapolated data of 100 km, 500 km and 1000 km to 2000 km. The front Axle channel is taken for the study.
Technical Paper

Experimental Study of Variation between Quasi-static and Dynamic Load Deformation Properties of Bovine Medial Collateral Ligaments

2009-04-20
2009-01-0392
In a significant number of automobile crashes involving pedestrians, the ligaments which control the stability of the knee, often get severely loaded. In lateral impact on knee during automotive crashes, varus-valgus motion results in failure of ligament by avulsion or by rupture in the middle region It is known that properties vary in different regions of the ligament. Experimental measurement of tensile load-elongation behavior of the middle region of bovine medial collateral ligament at strain rates of 10−4 /s to 160/s are reported here. The results show that the stress-strain behavior is linear under quasi-static loading whereas it is nonlinear and strain rate sensitive in dynamic loading conditions.
Technical Paper

Multi-Objective Optimization of Two Stage Spur Gearbox Using NSGA-II

2017-07-10
2017-28-1939
Minimum weight and high-efficiency gearboxes with the maximum service life are the prime necessity of today’s high-performance power transmission systems such as automotive and aerospace. Therefore, the problem to optimize the gearboxes is subjected to a considerable amount of interest. To accomplish these objectives, in this paper, two generalized objective functions for two stage spur-gearbox are formulated; first objective function aims to minimize the volume of gearbox material, while the second aims to maximize the power transmitted by the gearbox. For the optimization purpose, regular mechanical and critical tribological constraints (scuffing and wear) are considered. These objective functions are optimized to obtain a Pareto front for the two-stage gearbox using a specially formulated discrete version of non-dominated sorting genetic algorithm (NSGA-II) code written MATLAB. Two cases are considered, in the first with the regular mechanical constraints.
Technical Paper

Microstructure and Wear Behavior of Austempered and as-cast Ausferritic Gray Cast Irons

2011-01-19
2011-26-0051
The mechanical and wear behaviour of an alloyed gray cast iron with ausferrite microstructure directly obtained on solidification has been compared with austempered alloyed gray iron. As-cast ausferritic gray iron shows finer ausferrite and graphite flake morphology compared to austempered alloy. The volume of retained austenite is about 30% higher in as-cast ausferritic iron due to higher amount of alloying additions. The mechanical and wear properties of as-cast ausferritic iron are almost similar to austempered alloy.
Technical Paper

Performance of Thin-Ceramic-Coated Combustion Chamber with Gasoline and Methanol as Fuels in a Two-Stroke SI Engine

1994-10-01
941911
The performance of a conventional, carbureted, two-stroke spark-ignition (SI) engine can be improved by providing moderate thermal insulation in the combustion chamber. This will help to improve the vaporization characteristics in particular at part load and medium loads with gasoline fuel and high-latent-heat fuels such as methanol. In the present investigation, the combustion chamber surface was coated with a 0.5-mm thickness of partially stabilized zirconia, and experiments were carried out in a single-cylinder, two-stroke SI engine with gasoline and methanol as fuels. Test results indicate that with gasoline as a fuel, the thin ceramic-coated combustion chamber improves the part load to medium load operation considerably, but it affects the performance at higher speeds and at higher loads to the extent of knock and loss of brake power by about 18%. However, with methanol as a fuel, the performance is better under most of the operating range and free from knock.
Technical Paper

The Influence of High-Octane Fuel Blends on the Performance of a Two-Stroke SI Engine with Knock-Limited-Compression Ratio

1994-10-01
941863
The use of alcohol-gasoline blends enables the favorable features of alcohols to be utilized in spark ignition (SI) engines while avoiding the shortcomings of their application as straight fuels. Eucalyptus and orange oils possess high octane values and are also good potential alternative fuels for SI engines. The high octane value of these fuels can enhance the octane value of the fuel when it is blended with low-octane gasoline. In the present work, 20 percent by volume of orange oil, eucalyptus oil, methanol and ethanol were blended separately with gasoline, and the performance, combustion and exhaust emission characteristics were evaluated at two different compression ratios. The phase separation problems arising from the alcohol-gasoline blends were minimized by adding eucalyptus oil as a co-solvent. Test results indicate that the compression ratio can be raised from 7.4 to 9 without any detrimental effect, due to the higher octane rating of the fuel blends.
Technical Paper

Optimizing the Strength and Ductility of Al-6061 Alloy by Various Post-Rolling Ageing Treatments

2014-04-28
2014-28-0022
The effect of different cold- rolling and cryo-rolling routes on the strength and ductility of Al-6061 alloy was thoroughly investigated. Rolling decreased the grain size and increased the strength according to the Hall-Petch relationship. However subjecting the samples to ageing at different temperatures and for different time period increased the strength and improved the ductility. The ductility was improved due to the rearrangement and even decrease in dislocation density due to recovery and recrystallization during ageing while the strength was maintained due to ageing. Evolution of microstructure was investigated by optical microscopy, scanning electron microscopy. Preliminary hardness measurements coupled with tensile tests indicate the improvement of both yield strength and ductility. The disparity in ultimate tensile strength, yield strength and the elongation to failure with different ageing temperatures and for different time period is determined and discussed.
Technical Paper

Compression and Energy Absorption of Aluminum Alloy AA6061 and AA7005 Tubes Using Experimental and Simulation Methods

2015-01-14
2015-26-0169
There is a growing need for improved conceptual vehicle designs along with alternative materials to reduce the damage to the passengers and structures in aerospace and automotive industries. The energy absorption characteristics of materials play a major role in designing a safe vehicle for transport. In this paper, compression behavior and energy absorption of aluminum alloy AA6061 and AA7005 tubes in T4 and T6 conditions are investigated by experimental and numerical methods. The AA7005 and AA6061 tubes are solution heat treated and then aged to achieve the final strength in T6 condition. Experimental compression test results have shown improved energy absorption of tubes in T6 condition compared to tubes in T4 condition. There is less variation of energy among the tested samples. The mean load is compared with the results obtained from analytical formulae. Tensile properties have been obtained from tensile tests using UTM for both AA6061 and AA7005 tubes.
Technical Paper

Experimental Analysis of Force Recovery and Response Time using Strain Measurement Sensors in Stress Wave Force Balance

2024-06-01
2024-26-0451
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses.
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
X