Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Video

Supplier Discussions - 2012

2012-03-29
Trans Tech recently debuted the all-electric eTrans school bus providing a total zero emission school bus. The presentation will demonstrate Smith Electric Vehicles and their history with electric vehicles. The presentation will help ensure that everybody has an idea of what the electric school bus will do and to dispel any rumors about the vehicle. Presenter Brian S. Barrington, Trans Tech. Bus
Journal Article

DSI3 Sensor to Master Decoder using Symbol Pattern Recognition

2014-04-01
2014-01-0252
The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines three modulation levels form which 16 valid symbols are coded. This complex structure is best decoded with symbol pattern recognition. This paper proposes a simplification of the correlation score calculation that sharply reduces the required number of operations. Additionally, the paper describes how the pattern recognition is achieved using correlation scores and a decoding algorithm. The performance of this method is demonstrated by mean of simulations with different load models between the master and the sensors and varying noise injection on the channel. We prove than the pattern recognition can decode symbols without any error for up to 24dBm.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Non-standard CAN Network Topologies Verification at High Speed Transmission Rate using VHDL-AMS

2010-04-12
2010-01-0688
This paper considers the verification of non-standard CAN network topologies of the physical layer at high speed transmission rate (500.0Kbps and 1.0Mbps). These network topologies including single star, multiple stars, and hybrid topologies (multiple stars in combination with linear bus or with ring topology) are simulated by using behavior modeling language (VHDL-AMS) in comparison to measurement. Throughout the verification process, CAN transceiver behavioral model together with other CAN physical layer simulation components have been proved to be very accurate. The modeling of measurement environment of the CAN network is discussed, showing how to get the measurement and simulation results well matched. This demonstrates that the simulation solution is reliable, which is highly desired and very important for the verification requirement in CAN physical layer design.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

Cost Efficient Integration for Decentralized Automotive ECU

2004-03-08
2004-01-0717
As the demand for enhanced comfort, safety and differentiation with new features continues to grow and as electronics and software enable most of these, the number of electronic units or components within automobiles will continue to increase. This will increase the overall system complexity, specifically with respect to the number of controller actuators such as e-motors. However, hard constraints on cost and on physical boundaries such as maximum power dissipation per unit and pin-count per unit/connector require new solutions to alternative system partitioning. Vehicle manufacturers, as well as system and semiconductor suppliers are striving for increased scalability and modularity to allow for most cost optimal high volume configurations while featuring platform reuse and feature differentiation. This paper presents new semiconductor based approaches with respect to technologies, technology mapping and assembly technologies.
Technical Paper

Effective System Development Partitioning

2001-03-05
2001-01-1221
In terms of modern technical systems, the automotive sector is characterized by escalating complexity and functionality requirements. The development of embedded control systems has to meet highest demands regarding process-, time- and cost-optimization. Hence, the efficiency of software development becomes a crucial competitive advantage. Systems design engineers need effective tools and methods to achieve exemplary speed and productivity within the development phase. To obtain such tools and methods, semiconductor manufacturers and tool manufacturers must work closely together. Within the joint efforts of ETAS and Infineon, the software tool suite ASCET-SD was enhanced to generate efficient C code for Infineon's TriCore architecture mapped on ETAS's real-time operating system ERCOSEK. The processor interface to application & calibration tools was realized using the ETK probe based on a JTAG/Nexus link at very high bandwidth.
Technical Paper

TTCAN from Applications to Products in Automotive Systems

2003-03-03
2003-01-0114
This paper outlines the results of a study performed to analyze the mission of TTCAN from applications to products for automotive systems. As commonly acknowledged communication is one of the key elements for future and even present systems such as an automobile. A dramatically increasing number of busses and gateways even in low- to midrange vehicles is putting significant burden upon the validation scenario as well as the cost. Accordingly, numerous new initiatives have been started worldwide in order to find solutions to this; some of them by the definition of enhanced or new protocols. This paper shall have a look particular on the new standard of TTCAN (time-triggered communication on CAN). This protocol is based on the CAN data link layer as specified in ISO 11898-1 and may use standardized CAN physical layers such as specified in ISO 11898-2 (high-speed transceiver) or in ISO 11898-3 (fault-tolerant low-speed transceiver).
Technical Paper

Hardware/Software Co-Design of an Automotive Embedded Firewall

2017-03-28
2017-01-1659
The automotive industry experiences a major change as vehicles are gradually becoming a part of the Internet. Security concepts based on the closed-world assumption cannot be deployed anymore due to a constantly changing adversary model. Automotive Ethernet as future in-vehicle network and a new E/E Architecture have different security requirements than Ethernet known from traditional IT and legacy systems. In order to achieve a high level of security, a new multi-layer approach in the vehicle which responds to special automotive requirements has to be introduced. One essential layer of this holistic security concept is to restrict non-authorized access by the deployment of embedded firewalls. This paper addresses the introduction of automotive firewalls into the next-generation domain architecture with a focus on partitioning of its features in hardware and software.
Technical Paper

Safety Element out of Context - A Practical Approach

2012-04-16
2012-01-0033
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Technical Paper

Timing Analysis and Tracing Concepts for ECU Development

2014-04-01
2014-01-0190
Integration scenarios for ECU software become more complicated, as more constraints with regards to timing, safety and security need to be considered. Multi-core microcontrollers offer even more hardware potential for integration scenarios. To tackle the complexity, more and more model based approaches are used. Understanding the interaction between the different software components, not only from a functional but also from a timing view, is a key success factor for high integration scenarios. In particular for multi-core systems, an amazing amount of timing data can be generated. Usually a multi-core system handles more software functionality than a single-core system. Furthermore, there may be timing interference on the multicore systems, due to the shared usage of buses, memory banks or other hardware resources.
Technical Paper

Motor Control in Auxiliary Drive Systems How to Choose the Best Fitting Electronic Solution

2014-04-01
2014-01-0323
In modern vehicles, the number of small electrical drive systems is still increasing continuously for blowers, fans and pumps as well as for window lifts, sunroofs and doors. Requirements and operating conditions for such systems varies, hence there are many different solutions available for controlling such motors. In most applications, simple, low-cost DC motors are used. For higher requirements regarding operating time and in stop-start capable systems, the focus turns to highly efficient and durable brushless DC motors with electronic commutation. This paper compares various electronic control concepts from a semiconductor vendor point of view. These concepts include discrete control using relays or MOSFETs. Furthermore integrated motor drivers are discussed, including system-on-chip solutions for specific applications, e.g. specific ICs for window lift motors with LIN interface.
Technical Paper

Microsecond Bus (μSB): The New Open-Market Peripheral Serial Communication Standard

2005-04-11
2005-01-0057
For the past approximately 20 years, the Serial Peripheral Interface (SPI) has been the established standard for serial communication between a host or central microprocessor and peripheral devices. This standard has been used extensively in control modules covering the entire spectrum of automotive applications, as well as non-automotive applications. As the complexity of engine control modules grows, with the number of vehicle actuators being controlled and monitored increasing, the number of loads the central microprocessor has to manage is growing accordingly. These loads are typically controlled using discrete and pulse-width modulated (PWM) outputs from the microcontroller when real-time operation is essential or via SPI when real-time response is not critical. The increase of already high pin-count on microcontrollers, the associated routing effort and demand for connected power stages is a concern of cost and reliability for future ECU designs.
Technical Paper

Sensor Signal Delivery

2005-04-11
2005-01-0043
The signal delivery and quality of sensor data is of growing importance for modern automotive control applications. Sensors tend to be calibrated subsystems that are designed to stay in a defined tolerance and thus can easily be modeled. Compared to this deterministic behavior the transmission channel is time variant due to EMC and aging of contacts for example. The use of analog signaling, which is the actual state of realization in many cases, is sensitive to the time variant effects mentioned before. This time variance is hard to consider for the control system development. In this paper we will analyze the role of the sensor in the signal supply chain and discuss approaches for digital sensor-ECU communication and their potential to establish a link, which allows neglecting low level effects of the channel.
Technical Paper

Challenges with the Introduction of X-By-Wire Technologies to Passenger Vehicles and Light Trucks in regards to Functional Safety, Cybersecurity and Availability

2023-04-11
2023-01-0581
Classic vehicle production had limitations in bringing the driving commands to the actuators for vehicle motion (engine, steering and braking). Steering columns, hydraulic tubes or steel cables needed to be placed between the driver and actuator. Change began with the introduction of e-gas systems. Mechanical cables were replaced by thin, electric signal wires. The technical solutions and legal standardizations for addressing the steering and braking systems, were not defined at this time. Today, OEMs are starting E/E-Architecture transformations for manifold reasons and now have the chance to remove the long hydraulic tubes for braking and the solid metal columns used for steering. X-by-wire is the way forward and allows for higher Autonomous Driving (AD) levels for automated driving vehicles. This offers new opportunities to design the vehicle in-cabin space. This paper will start with the introduction of x-by-wire technologies.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Technical Paper

Feasibility Study for a Secure and Seamless Integration of Over the Air Software Update Capability in an Advanced Board Net Architecture

2016-04-05
2016-01-0056
Vehicle manufacturers are challenged by rising costs for vehicle recalls. A major part of the costs are caused by software updates. This paper describes a feasibility study on how to implement software update over the air (SOTA) in light vehicles. The differences and special challenges in the automotive environment in comparison to the cellular industry will be explained. Three key requirements focus on the drivers’ acceptance and thus are crucial for the vehicle manufacturers: SOTA must be protected against malicious attacks. SOTA shall interfere as little as possible with the availability of a vehicle. Long update processes with long vehicle downtimes or even complete fails must be avoided. The functional safety of the vehicle during operation may not be limited in any way The study gives options how those objectives can be achieved. It considers the necessary security measures and describes the required adaptations of the board-net architectures both on software and hardware level.
X