Refine Your Search

Topic

Author

Search Results

Video

ARAMiS - Taming Multicores for Safe Transportation

2012-05-17
Multicore processor are well established in classical and tablet personal computers for some year. Such processors use more then one central core for computation and allow to integrate more computational power with smaller costs. However more than 90% of all processors worldwide are not placed in classical IT but are empedded in bigger systems like in modern vehicles or airplanes. Such systems face a very high demand in terms of safety, security an reliability which hinders the use of multicores in such systems. The funded project ARAMiS faces these demands and has the goal to enable the usability of multicore systems in the domains automotive and avionics, as well as later also railway. ARAMiS is the basis for higher traffic safety, traffic efficiency and comfort.
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

On-Chip Delta-Sigma ADC for Rotor Positioning Sensor Application (Resolver-to-Digital Converter)

2014-04-01
2014-01-0333
This paper discusses the RDC method utilizing delta-sigma analog-to-digital converter hardware module (DSADC) integrated in the Infineon's microcontroller family. With its higher resolution capability when compared to the regularly used ADC with successive-approximation (SAR), DSADC seems to have more potential. On the other hand, DSADC's inherent properties, such as asynchronous sampling rate and group delay, which when not handled properly, would have negative effects to the rotor positioning system. The solution to overcome those side-effects involves utilization of other internal microcontroller's resources such as timers and capture units, as well as additional software processing run inside CPU. The rotor positioning system is first modeled and simulated in high-level simulation language environment (Matlab and Simulink) in order to predict the transient- and steady state behaviors. The group delay itself is obtained by simulating the model of DSADC module implementation.
Journal Article

GBit Ethernet - The Solution for Future In-Vehicle Network Requirements?

2015-04-14
2015-01-0200
In-vehicle communication faces increasing bandwidth demands, which can no longer be met by today's MOST150, FlexRay or CAN networks. In recent years, Fast Ethernet has gained a lot of momentum in the automotive world, because it promises to bridge the bandwidth gap. A first step in this direction is the introduction of Ethernet as an On Board Diagnostic (OBD) interface for production vehicles. The next potential use cases include the use of Ethernet in Driver Assistance Systems and in the infotainment domain. However, for many of these use cases, the Fast Ethernet solution is too slow to move the huge amount of data between the Domain Controllers, ADAS Systems, Safety Computer and Chassis Controller in an adequate way. The result is the urgent need for a network technology beyond the Fast Ethernet solution. The question is: which innovation will provide enough bandwidth for domain controllers, fast flashing routines, video data, MOST-replacement and internal ECU buses?
Technical Paper

Routing Methods Considering Security and Real-Time of Vehicle Gateway System

2020-04-14
2020-01-1294
Recently, vehicle networks have increased complexity due to the demand for autonomous driving or connected devices. This increasing complexity requires high bandwidth. As a result, vehicle manufacturers have begun using Ethernet-based communication for high-speed links. In order to deal with the heterogeneity of such networks where legacy automotive buses have to coexist with high-speed Ethernet links vehicle manufacturers introduced a vehicle gateway system. The system uses Ethernet as a backbone between domain controllers and CAN buses for communication between internal controllers. As a central point in the vehicle, the gateway is constantly exchanging vehicle data in a heterogeneous communication environment between the existing CAN and Ethernet networks. In an in-vehicle network context where the communications are strictly time-constrained, it is necessary to measure the delay for such routing task.
Journal Article

Influence of Rubber Temperature on Transfer Functions of Bushings

2015-12-01
2015-01-9115
In ride comfort as well as driving dynamics, the behavior of the vehicle is affected by several subsystems and their properties. When analyzing the suspension, especially the characteristics of the main spring and damper but also rubber bushings are of main importance. Still, the properties of the different components are dependent on the present operating conditions. Concerning rubber bushings, several effects have already been investigated, e.g. dependencies of the transfer function of frequency, amplitude or load history. In this context influences of changes in temperature are often neglected. However, in the following research, the focus specifically lies on determination and analysis of the temperature dependency of rubber bushings. For this purpose, initially the relationship between properties of pure rubber and rubber bushings is described, which serves as a basis for correlating respective temperature dependencies.
Journal Article

Smart Power Semiconductors - Repetitive Short Circuit Operation

2008-04-14
2008-01-0719
In addition to basic switching functionality, smart power switches mainly provide diagnostic and protection functions, e.g. for short circuits to the load, which makes it all the more surprising that short circuit protected smart switches have been used for years in automotive applications without there being a precise definition of a short circuit. This article describes what Infineon has done to fill this gap. It was first necessary to define the kind of short circuits likely to occur in automotive applications and to specify the use and operating points of the smart switches. The next logical step was the standardization of the test circuit and application conditions in the AEC (Automotive Electronics Council) to allow an industry-wide comparison of the test results.
Journal Article

Obtaining Diagnostic Coverage Metrics Using Rapid Prototyping of Multicore Systems

2011-04-12
2011-01-1007
With the introduction of the ISO26262 automotive safety standard there is a burden of proof to show that the processing elements in embedded microcontroller hardware are capable of supporting a certain diagnostic coverage level, depending on the required Automotive Safety Integrity Level (ASIL). The current mechanisms used to provide actual metrics of the Built-in Self Tests (BIST) and Lock Step comparators use Register Transfer Level (RTL) simulations of the internal processing elements which force faults into individual nodes of the design and collect diagnostic coverage results. Although this mechanism is robust, it can only be performed by semiconductor suppliers and is costly. This paper describes a new solution whereby the microcontroller is synthesized into a large Field Programmable Gate Array (FPGA) with a test controller on the outside.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Basic Single-Microcontroller Monitoring Concept for Safety Critical Systems

2007-04-16
2007-01-1488
Electronic Control Units of safety critical systems require constant monitoring of the hardware to be able to bring the system to a safe state if any hardware defects or malfunctions are detected. This monitoring includes memory checking, peripheral checking as well as checking the main processor core. However, checking the processor core is difficult because it cannot be guaranteed that the error will be properly detected if the monitor function is running on a processing system which is malfunctioning. To circumvent this issue, several previously presented monitoring concepts (e.g. SAE#2006-01-0840) employ a second external microprocessor to communicate with the main processor to check its integrity. The addition of a second microcontroller and the associated support circuitry that is required adds to the overall costs of the ECU, increases the size and creates significant system complexity.
Technical Paper

Implementation of a Basic Single-Microcontroller Monitoring Concept for Safety Critical Systems on a Dual-Core Microcontroller

2007-04-16
2007-01-1486
Electronic Control Units of safety critical systems require constant monitoring of the hardware to be able to bring the system to a safe state if any hardware defects or malfunctions are detected. This monitoring includes memory checking, peripheral checking as well as checking the main processor core. However, checking the processor core is difficult because it cannot be guaranteed that the error will be properly detected if the monitor function is running on a processing system which is malfunctioning. To circumvent this issue, several previously presented monitoring concepts (e.g. SAE#2006-01-0840) employ a second external microprocessor to communicate with the main processor to check its integrity. This paper will present a concept which maps the functions of the external monitoring unit into an internal second processing core which are frequently available on modern, 32bit, monolithic, dual-core microcontrollers.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

End-To-End Protection for SIL3 Requirements in a FlexRay Communication System

2008-04-14
2008-01-0112
This paper proposes end-to-end protection mechanisms to be added to a generic FlexRay network in order to achieve fault detection and integrity levels sufficient for a SIL3 fail safe communication system. The mechanisms are derived from the random hardware failure modes to be considered for communication controllers according to IEC 61508. Mechanisms provided by the FlexRay protocol are pointed out. Additional features necessary to fulfil the requirements are discussed. It is shown how to calculate the failure rate probabilities of the CRC used as a safety code with respect to EN 50159.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

Automotive Sensors & Sensor Interfaces

2004-03-08
2004-01-0210
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems push the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration pass to evolution and even revolution of automotive Sensors and Sensor interfaces. The document will explore different architectures and partitioning. Sensor technologies such as magnetic field sensors based on the hall effect as well as bulk and surface silicon micro machined sensors will be mapped to automotive applications by examples. Functions such as self-test, self-calibration and self-repair will be developed.
Technical Paper

Digital Knock Signal Conditioning using Fast ADC and DSP

2004-03-08
2004-01-0517
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems is pushing the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. The former analogue filter design is now replaced by digital signal processing. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration route to evolve and even revolutionize automotive electronics. To illustrate this migration toward digital processing the knock function has been developed. A simple RC filter is used as external anti-aliasing. To get the maximum flexibility the signal is very early converted and processed digitally. The micro-controller has been developed using a three-layered solution.
Technical Paper

Correction of Nozzle Gradient Effects in Open Jet Wind Tunnels

2004-03-08
2004-01-0669
In open jet wind tunnels with high blockage ratios a sharp rise in drag is observed for models approaching the nozzle exit plane. The physical background for this rise in drag will be analyzed in the paper. Starting with a basic analysis of the dependencies of the effect on model and wind tunnel properties, the key parameters of the problem will be identified. It will be shown using a momentum balance and potential flow theory that interaction between model and nozzle exit can result in significant tunnel-induced gradients at the model position. In a second step, a CFD-based investigation is used to show the interaction between nozzle exit and a bluff body. The results cover the whole range between open jet and closed wall test section interaction. The model starts at a large distance from the nozzle, then moves towards the nozzle, enters the nozzle and is finally completely inside the nozzle.
Technical Paper

Diagnostic and Control Systems for Automotive Power Electronics

2001-03-05
2001-01-0075
The recent improvements in automotive electronics have had a tremendous impact on safety, comfort and emissions. But the continuous increase of the volume of electronic equipment in cars (representing more than 25% of purchasing volume) as well as the increasing system complexity represent a new challenge to quality, post-sales customer support and maintenance. Identifying a fault in a complex network of ECUs, where the different functions are getting more and more intricate, is not an easy task. It can be shown that with the levels of reliability common in 1980, an upper-range automobile of today could never function fault-free. On-Board-Diagnostics (OBD) concepts are emerging to assist the maintenance personnel in localizing the source of a problem with high accuracy, reducing the vehicle repair time, repair costs and costs of warranty claims.
Technical Paper

Production of Autobody Components with Hydromechanical Sheet Forming (AHU®)

2002-07-09
2002-01-2026
The lightweight construction strategies that are demanded by the automobile industry are being employed more and more. These strategies lead to the increasing importance of the forming method and types of materials used. Especially forming technologies based on liquid media have the potential to meet these demands. These forming technologies make it possible to produce parts that have both, more complex geometries and optimized characteristics. This forming technology constitutes an intelligent process management including the significant materials parameters and behavior, the simulation and some new developments especially for the optimization of the quality and the cycle time. Hydromechanical sheet forming (AHU®) is an alternative production (forming) process, with very interesting results and developments for the manufacture of specific automobile components.
X