Refine Your Search

Topic

Author

Search Results

Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Technical Paper

Investigations into Steady-State and Stop-Start Emissions in a Wankel Rotary Engine with a Novel Rotor Cooling Arrangement

2021-09-05
2021-24-0097
The present work investigates a means of controlling engine hydrocarbon startup and shutdown emissions in a Wankel engine which uses a novel rotor cooling method. Mechanically the engine employs a self-pressurizing air-cooled rotor system (SPARCS) configured to provide improved cooling versus a simple air-cooled rotor arrangement. The novelty of the SPARCS system is that it uses the fact that blowby past the sealing grid is inevitable in a Wankel engine as a means of increasing the density of the medium used for cooling the rotor. Unfortunately, the design also means that when the engine is shutdown, due to the overpressure within the engine core and the fact that fuel vapour and lubricating oil are to be found within it, unburned hydrocarbons can leak into the combustion chambers, and thence to the atmosphere via either or both of the intake and exhaust ports.
Journal Article

Analytical and Developmental Techniques Utilized in the Structural Optimization of a New Lightweight Diesel Engine

2015-06-15
2015-01-2298
Jaguar Land Rover (JLR) has designed and developed a new inline 4 cylinder engine family, branded Ingenium. In addition to delivering improved emissions and fuel economy over the outgoing engine, another key aim from the outset of the program was to reduce the combustion noise. This paper details the NVH development of the lead engine in this family, a 2.0 liter common rail turbo diesel. The task from the outset of this new program was to reduce the mass of the engine by 21.5 kg, whilst also improving the structural attenuation of the engine by 5 dB in comparison to the outgoing engine. Improving the structural attenuation by 5 dB was not only a key enabler in reducing combustion noise, but also helped to achieve a certified CO2 performance of 99 g/km in the all-new Jaguar XE model, by allowing more scope for increasing cylinder pressure forcing without compromising NVH.
Journal Article

A New De-throttling Concept in a Twin-Charged Gasoline Engine System

2015-04-14
2015-01-1258
Throttling loss of downsized gasoline engines is significantly smaller than that of naturally aspirated counterparts. However, even the extremely downsized gasoline engine can still suffer a relatively large throttling loss when operating under part load conditions. Various de-throttling concepts have been proposed recently, such as using a FGT or VGT turbine on the intake as a de-throttling mechanism or applying valve throttling to control the charge airflow. Although they all can adjust the mass air flow without a throttle in regular use, an extra component or complicated control strategies have to be adopted. This paper will, for the first time, propose a de-throttling concept in a twin-charged gasoline engine with minimum modification of the existing system. The research engine model which this paper is based on is a 60% downsized 2.0L four cylinder gasoline demonstrator engine with both a supercharger and turbocharger on the intake.
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Journal Article

EU6c Particle Number on a Full Size SUV - Engine Out or GPF?

2014-10-13
2014-01-2848
This paper describes the findings of a design, simulation and test study into how to reduce particulate number (Pn) emissions in order to meet EU6c legislative limits. The objective of the study was to evaluate the Pn potential of a modern 6-cylinder engine with respect to hardware and calibration when fitted to a full size SUV. Having understood this capability, to redesign the combustion system and optimise the calibration in order to meet an engineering target value of 3×1011 Pn #/km using the NEDC drive cycle. The design and simulation tasks were conducted by JLR with support from AVL. The calibration and all of the vehicle testing was conducted by AVL, in Graz. Extensive design and CFD work was conducted to refine the inlet port, piston crown and injector spray pattern in order to reduce surface wetting and improve air to fuel mixing homogeneity. The design and CFD steps are detailed along with the results compared to target.
Journal Article

Octane Response in a Downsized, Highly Boosted Direct Injection Spark Ignition Engine

2014-04-01
2014-01-1397
Increasingly strict government emissions regulations in combination with consumer demand for high performance vehicles is driving gasoline engine development towards highly downsized, boosted direct injection technologies. In these engines, fuel consumption is improved by reducing pumping, friction and heat losses, yet performance is maintained by operating at higher brake mean effective pressure. However, the in-cylinder conditions of these engines continue to diverge from traditional naturally aspirated technologies, and especially from the Cooperative Fuels Research engine used to define the octane rating scales. Engine concepts are thus key platforms with which to screen the influence of fundamental fuel properties on future engine performance.
Technical Paper

The Effects of Engine Thermal Conditions on Performance, Emissions and Fuel Consumption

2010-04-12
2010-01-0802
Engine thermal management systems (TMS) are gaining importance in engine development and calibration to achieve low fuel consumption and meet future emissions standards. To benefit from their full potential, a thorough understanding of the effects on engine behavior is necessary. Steady state tests were performed on a 2.0L direct injection diesel engine at different load points. A design of experiments (DoE) approach was used to conduct exhaust gas recirculation (EGR) and injection timing swings at different coolant temperatures. The effect of the standard engine controller and calibration was observed during these tests. The injection timing strategy included a significant dependency on coolant temperature, retarding injection by about 3° crank angle between coolant temperatures of 70°C and 86°C. In contrast, EGR strategy was essentially independent of coolant temperature, though physical interactions were present due in part to the EGR cooler.
Technical Paper

The Effect of Forced Cool Down on Cold Start Test Repeatability

2009-06-15
2009-01-1976
Increasing the number of cold-start engine cycles which could be run in any one day would greatly improve the productivity of an engine test facility. However with the introduction of forced cooling procedures there is the inherent risk that test-to-test repeatability will be affected. Therefore an investigation into the effects caused by forced cooling on fuel consumption and the temperature distribution through the engine and fluids is essential. Testing was completed on a 2.4 litre diesel engine running a cold NEDC. The test facility utilises a basic ventilation system, which draws in external ambient air, which is forced past the engine and then drawn out of the cell. This can be supplemented with the use of a spot cooling fan. The forced cool down resulted in a much quicker cool down which was further reduced with spot cooling, in the region of 25% reduction.
Technical Paper

Potential of a Controllable Engine Cooling System to Reduce NOx Emissions in Diesel Engines

2004-03-08
2004-01-0054
This paper investigates the potential for reduced NOx emissions from the integration of thermal factors into the Diesel engine calibration process. NOx emissions from Diesel engines have been shown to be sensitive to engine operating temperature, which is directly related to the level of cooling applied to the engine, in addition to the main engine operating parameters such as injection timing and EGR ratio. Experimental engine characterization of the main engine parameters against coolant temperature set point shows that engine cooling settings can extend the feasible lower limits of fuel consumption and emissions output from Diesel engine. With the adoption of an integrated calibration methodology including engine cooling set point, NOx emissions can be improved by up to 30% at crucial high speed/load operating points seen in the NEDC drive cycle with a minor reduction in fuel economy and small increase in CO output.
Technical Paper

Integrated Cooling Systems for Passenger Vehicles

2001-03-05
2001-01-1248
Electric coolant pumps for IC engines are under development by a number of suppliers. They offer packaging and flexibility benefits to vehicle manufacturers. Their full potential will not be realised, however, unless an integrated approach is taken to the entire cooling system. The paper describes such a system comprising an advanced electric pump with the necessary flow controls and a supervisory strategy running on an automotive microprocessor. The hardware and control strategy are described together with the simulation developed to allow its calibration and validation before fitting in a B/C class European passenger car. Simulation results are presented which show the system to be controllable and responsive to deliver optimum fuel consumption, emissions and driver comfort.
Technical Paper

Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles

2016-04-05
2016-01-1055
Range Extended Electric Vehicles (REEVs) are gaining popularity due to their simplicity, reduced emissions and fuel consumption when compared to parallel or series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) can be optimised to a number of steady state points which offers significant improvement in overall exhaust emissions. One of the key challenges in such vehicles is to reduce the overall powertrain costs, and OEMs providing REEVs such as the BMW i3 have included the range extender as an optional extra due to increasing costs on the overall vehicle price. This paper discusses the development of a low cost Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 624 cc two cylinder automotive gasoline engine. Changes to the base engine are limited to those required for range extender development purposes and include prototype control system, electronic throttle, redesigned manifolds and calibration on European grade fuel.
Technical Paper

Comparing the Effect of Fuel/Air Interactions in a Modern High-Speed Light-Duty Diesel Engine

2017-09-04
2017-24-0075
Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
Technical Paper

Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for High Performance Engines

2022-08-30
2022-01-1066
With ever stricter legislative requirements for CO2 and other exhaust emissions, significant efforts by OEMs have launched a number of different technological strategies to meet these challenges such as Battery Electric Vehicles (BEVs). However, a multiple technology approach is needed to deliver a broad portfolio of products as battery costs and supply constraints are considerable concerns hindering mass uptake of BEVs. Therefore, further investment in Internal Combustion (IC) engine technologies to meet these targets are being considered, such as lean burn gasoline technologies alongside other high efficiency concepts such as dedicated hybrid engines. Hence, it becomes of sound reason to further embrace diversity and develop complementary technologies to assist in the transition to the next generation hybrid powertrain. One such approach is to provide increased valvetrain flexibility to afford new degrees of freedom in engine operating strategies.
Technical Paper

Development and Testing of a Low Cost High Performance Hybrid Vehicle Electric Motor

2013-04-08
2013-01-1760
A large proportion of automotive engineering research is focused on the reduction of vehicle fuel consumption thereby reducing CO₂ emissions. One effective method is to use an electric motor in conjunction with the engine (hybrid electric vehicle). This paper details the development and performance characteristics of a low cost hybrid vehicle electric motor, originally developed for the retrofit hybrid vehicle market, although it is intended to be suitable for many applications. The motor is a low cost, scalable, high performance motor, primarily for automotive applications. The motor has been designed to make it stackable for higher power or torque requirements. The use of lightweight materials and innovative cooling designs are novel to this motor. Results obtained from extensive testing of the motor are detailed in the paper including the efficiency map, power and torque curves, continuous powers, etc.
Technical Paper

Incorporating Nucleate Boiling in a Precision Cooling Strategy for Combustion Engines

1997-05-19
971791
Precision cooling has a number of advantages over the conventional cooling of combustion engines. It is primarily used to prevent component failures and is generally intended to create an even distribution of temperature within the cylinder head and block. This leads to lower thermal stresses and higher component durability. Precision cooling in the form of forced convection and nucleate boiling can be used to greater effect than that of traditional precision cooling concentrating on forced convection only. This paper describes the analytical and experimental precision cooling strategy that has been used to investigate nucleate and transition boiling. Analytical details of the models are described and preliminary experimental data is provided for comparison. The major finding indicates that the diameter of the internal cooling passage is one of the significant factors that influences the critical heat flux.
Technical Paper

Factors Affecting Test Precision in Latest Vehicle Technologies

2018-04-03
2018-01-0640
Demonstrating the cost/benefits of technologies in the automotive sector is becoming very challenging because the benefits from technologies are sometimes of similar magnitude to testing precision. This paper aims to understand vehicle-borne imprecision and the effect of this on the quality of chassis dynamometer (CD) testing. Fuel consumption and NOx emissions precision is analyzed for two diesel vehicles with particulate filter and SCR systems. The two vehicles were tested on a high precision CD facility over the NEDC (New European Drive Cycle) and WLTC (World harmonized Light-duty Test Cycle) cycles. The CD base precision of testing was characterized between 0.6-3% depending on the cycle phase. A novel application of multi-variate statistical analysis was used to identify the factors that affected testing precision, allowing isolation of small differences that were not obvious when conducting cycle-averaged or cycle-phase-averaged analysis.
Technical Paper

A Driver Advisory Tool to Reduce Fuel Consumption

2013-03-10
2012-01-2087
Driver behaviour can strongly affect fuel consumption, and driver training in eco-driving techniques has been shown to reduce fuel consumption by 10% on average. However the effects of this training can be short-lived, so there is an apparent need for continuous monitoring of driver behaviour. This study presents a driver advisory tool which encourages eco-driving, and its evaluation in the field. The system, developed by Ashwoods Automotive Ltd (UK) and the University of Bath (UK), is aimed at fleet operators of light commercial vehicles, where the driver is typically a company employee. A significant strength of the system is that it has been designed for easy integration with the vehicle CAN-bus, reducing complexity and cost. By considering the Inertial Power Surrogate (speed times acceleration) the core algorithm is able to identify behaviour which is likely to increase fuel consumption.
Technical Paper

Engine Test Data Quality Requirements for Model Based Calibration: A Testing and Development Efficiency Opportunity

2013-04-08
2013-01-0351
This paper documents some of the findings from a joint JLR and AVL project which was conducted at the JLR Gaydon test facility in the UK. A testing and development efficiency concept is presented and test data quality is identified as a key factor. In support of this methods are proposed to correctly measure and set targets for data quality with high confidence. An illustrative example is presented involving a Diesel passenger car calibration process which requires response surface models (RSMs) of key engine measured quantities e.g. engine-out emissions and fuel consumption. Methods are proposed that attempt to quantify the relationships between RSM statistical model quality metrics, test data variability measures and design of experiment (DOE) formulation. The methods are tested using simulated and real test data.
X