Refine Your Search

Topic

Author

Search Results

Journal Article

Liquid Jet Deformation Induced by Cavitation in Nozzles of Various Shapes

2009-09-13
2009-24-0157
Cavitation in the nozzles of various shapes and liquid jets discharged from the nozzles are visualized using a high-speed camera to investigate the effects of cavitation on liquid jet deformation. Cylindrical nozzles and two-dimensional (2D) nozzles of various upstream diameters and length-to-diameter ratios (L/D) are used. For simultaneous high-speed visualizations of cavitation and a jet, a tilted acrylic plate is placed in front of the jets injected through the 2D nozzles, while three mirrors are used to capture both the front view of the jet injected through a cylindrical nozzle and the side view of cavitation. The visualizations confirm that the collapse of a cavitation cloud near the exit induces a ligament formation in 2D and cylindrical nozzles of various L/Ds. Although no vapor film is formed in short nozzles, cavitation clouds are shed near the exit and induce ligaments.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Technical Paper

An Analysis of Induction Port Fuel Behavior

1991-10-01
912348
Since the fuel supply specifications in a multi-point injection (MPI) system are usually determined experimentaly, the way fuel behaves in the induction port is still not clearly understood. In this study, a fuel behavior model is developed to gain a better understanding of how fuel behaves in the induction port so that the best fuel supply specifications can be determined on the basis of analysis. This paper outlines a model of fuel spray and wall film and presents some typical calculation results. Taking into account fuel properties, the vapor, the flow and other characteristics of fuel in the induction port are calculated using these models. A comparison of the calculated results with experimental data confirms the validity of the model. The calculated results show the effects of the fuel propeties and fuel supply system specifications on induction port fuel behavior.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Compact and Long-Stroke Multiple-Link VCR Engine Mechanism

2007-10-29
2007-01-3991
A multiple-link variable compression ratio (VCR) mechanism is suitable for a long-stroke engine by providing the following characteristics: (1) a nearly symmetric piston stroke and (2) an upper link that stays vertical around the time of the maximum combustion pressure. These two characteristics work to reduce force inputs to the piston. The maximum inertial force around top dead center is reduced by the effect of the first characteristic. The second characteristic is effective in reducing piston side thrust force and helps ease piston pin lubrication. Because of the combined effect of these characteristics, the piston skirt can be made smaller and the piston pin can be shortened. That makes it possible for the piston skirt and piston pin to move between the counterweights, resulting in a downward extension of the piston stroke. As a result, a longer-stroke engine mechanism can be achieved without making the cylinder block taller.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Development of a High-Pressure Fueling System for a Direct-Injection Gasoline Engine

1998-05-04
981458
A direct-injection gasoline engine that uses a stratified charge combustion process was developed by Nissan and released in the Japanese market toward the end of 1997. This new engine is based on Nissan's VQ engine, which enjoys a good reputation for its quick throttle response and low fuel consumption, and has been developed to accomplish the objectives of reducing fuel consumption by stratified charge combustion and securing high power output. The fuel injectors are connected by an arrangement of lightweight, small-diameter fuel lines that distribute fuel to each injector under high pressure. This system was adopted in order to reconcile the use of an aerodynamic straight intake port with the desired fuel injection position. The use of a casting net injector, which uniformly distributes the fuel spray above the piston, makes it possible to accomplish stratified charge combustion with a shallow-bowl piston.
Technical Paper

Numerical Optimization of the Fuel Mixing Process in a Direct-Injection Gasoline Engine

1998-05-04
981440
The spray formation and mixing processes in a direct-injection gasoline engine are examined by using a sophisticated air flow calculation model and an original spray model. The spray model for a spiral injector can evaluate the droplet size and spatial distribution under a wide range of parameters such as the initial cone angle, back pressure and injection pressure. This model also includes the droplet breakup process due to wall impingement. The arbitrary constants used in the spray model are derived theoretically without using any experimental data. Fuel vapor distributions just before ignition and combustion processes are analyzed for both homogeneous and stratified charge conditions.
Technical Paper

Development of the Full Active Suspension by Nissan

1990-09-01
901747
Nissan has developed a hydraulic active suspension which uses an oil pump as its power source to produce hydraulic pressure that negates external forces acting on the vehicle. As a result, the suspension system is able to control vehicle movement freely and continuously. This control capability makes it possible to provide higher levels of ride comfort and vehicle dynamics than are obtainable with conventional suspension systems. The major features of the hydraulic system include: (1) active bouncing control using a skyhook damper, (2) a frequency-sensitive damping mechanism and (3) active control over roll, dive and squat.
Technical Paper

A Study of a Gasoline-fueled HCCI Engine∼Mode Changes from SI Combustion to HCCI Combustion∼

2008-04-14
2008-01-0050
Since the stable operating region of a gasoline-fueled HCCI engine is limited to the part load condition, a mode change between SI and HCCI combustion is required, which poses an issue due to the difference in combustion characteristics. This report focuses on the combustion characteristics in the transitional range. The combustion mode in the transitional range is investigated by varying the internal EGR rate, intake air pressure, and spark advance timing in steady-state experiments. In this parametric study, stable SI-CI combustion is observed. This indicates that the combustion mode transition is possible without misfiring or knocking, regardless of the speed of variable valve mechanism which includes VVA, VVEL, VTEC, VVL and so on, though the response of intake air pressure still remains as a subject to be examined in the actual application.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

2010-10-25
2010-01-2246
Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Technical Paper

Development of Nissan's New Generation 4-Cylinder Engine

2001-03-05
2001-01-0328
This paper describes the new inline 4-cylinder QR engine series that is available in 2.0-liter and 2.5-liter versions. The next-generation QR engine series incorporates new and improved technologies to provide an optimum balance of power, quietness and fuel economy. Its quiet operation results from the adoption of a compact balancer system and the reduced weight of major moving parts. Power and fuel economy have been enhanced by a two-stage cooling system, a continuous variable valve timing control system, a dual close coupled catalyst system, electronic throttle control and an improved direct-injection system. The latter includes an improved combustion chamber concept and improved fuel spray characteristics achieved by driving the injector by battery voltage. A lightweight and compact engine design has been achieved by adopting a high-pressure die cast aluminum cylinder block, resin intake manifold and rocker cover and a serpentine belt drive.
Technical Paper

Study of Fuel Dilution in Direct-Injection and Multipoint Injection Gasoline Engines

2002-05-06
2002-01-1647
Fuel dilution is one of the phenomena requiring attention in direct-injection engines. This study examined the factors contributing to increased fuel dilution in direct-injection and conventional multipoint injection gasoline engines, focusing in particular on fuel dilution in the oil pan. The results showed that fuel dilution is affected by fuel consumption, fuel properties and oil/cooling water temperatures in multipoint injection engines. In addition to these factors, fuel injection timing is another factor that increases fuel dilution in direct-injection engines.
Technical Paper

Development of Thinnest Wall Catalyst Substrate

2002-03-04
2002-01-0358
The thinnest wall thickness of automotive catalyst substrates has previously been 30 μm for metal substrates and 50 μm for ceramic substrates. This paper describes a newly developed catalyst substrate that is the world's first to achieve 20-μm-thick cell walls. This catalyst substrate features low thermal capacity and low pressure loss. Generally, a thinner cell wall decreases substrate strength and heat shock resistance. However, the development of a “diffused junction method”, replacing the previous “wax bonding method”, and a small waved foil has overcome these problems. This diffused junction method made it possible to strengthen the contact points between the inner waved foil and the rolled foil compared with previous substrates. It was also found that heat shock resistance at high temperature can be much improved by applying a slight wave to the foil instead of using a plane foil.
Technical Paper

Dynamic Characteristics Analysis of Brake Pipings

1991-01-01
910022
A new analysis procedure have been developed that evaluate a brake system performance based on analyses of the transient characteristics and frequency characteritics in the brake piping. Using this procedure, analyses were made of the effect of ABS operation on brake pressure changes and of the influence of the orifice on the pressure transmission characteristics. As an example of a frequency analysis, the pressure transmission characteristics were analyzed when pulse pressure occured in the brake piping as a result of variation in the wall thickness of the brake rotors. This paper presents the results of these analyses and shows the validity of the new procedure through a comparison with experimental data.
Technical Paper

Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted S. I. Engines

2016-10-17
2016-01-2292
The effects of lubricant oil and fuel properties on low speed pre-ignition (LSPI) occurrence in boosted S.I. engines were experimentally evaluated with multi-cylinder engine and de-correlated oil and fuel matrices. Further, the auto-ignitability of fuel spray droplets and evaporated homogeneous fuel/oil mixtures were evaluated in a combustion bomb and pressure differential scanning calorimetry (PDSC) tests to analyze the fundamental ignition process. The work investigated the effect of engine conditions, fuel volatility and various lubricant additives on LSPI occurrence. The results support the validity of aspects of the LSPI mechanism hypothesis based on the phenomenon of droplets of lubricant oil/fuel mixture (caused by adhesion of fuel spray on the liner wall) flying into the chamber and autoigniting before spark ignition.
Technical Paper

Numerical Simulation System for Analyzing Fuel Film Flow in Gasoline Engine

1993-03-01
930326
A new numerical simulation system has been developed which predicts flow behavior of fuel film formed on intake port and combustion chamber walls of gasoline engines. The system consists of a film flow model employing film thickness as a dependent variable, an air flow model, and a fuel spray model. The system can analyze fuel film flow formed on any arbitrary three-dimensional configuration. Fuel film flow formed under a condition of continuous intermittent fuel injection and steady-state air flow was calculated, and comparison with experimental data showed the system possessing ability of qualitative prediction.
Technical Paper

Three-Dimensional Computation of the Effects of the Swirl Ratio in Direct-Injection Diesel Engines on NOx and Soot Emissions

1996-05-01
961125
Three-dimensional computation has been applied to analyze combustion and emission characteristics in direct-injection diesel engines. A computational code called TurboKIVA was used to investigate the effects of the swirl ratio, one of the fundamental factors related to combustion control, on combustion characteristics and NOx and soot emissions. The code was first modified to calculate soot formation and oxidation and the precise behavior of fuel drops on the combustion chamber wall. As a result of improving calculation accuracy, good agreement was obtained between the measured and predicted pressure, heat release rate and NOx and soot emissions. Using this modified version of TurboKIVA, the effects of the swirl ratio on NOx and soot emissions were investigated. The computational results showed that soot emissions were reduced with a higher swirl ratio. However, a further increase in the swirl ratio produced greater soot emissions.
Technical Paper

A Study on Engine Bearing Performance Focusing on the Viscosity-Pressure Characteristic of the Lubricant and Housing Stiffness

1996-05-01
961144
It is important to understand the influence of housing stiffness on bearing performance, particularly for the connecting rod bearings of automotive engines. It is known that the engine lubricant shows a piezoviscous characteristic whereby its viscosity changes under the influence of pressure. Engine bearings under a heavy load are apt to be influenced in this way. In this study, the effects of connecting rod stiffness and lubricant piezoviscosity on bearing performance were examined by elastohydrodynamic lubrication (EHL) analysis under conditions corresponding to the high-speed operation of an actual engine. The results indicated that under such heavy load conditions housing stiffness greatly affects friction loss because of lubricant piezoviscosity. It was also found that the piezoviscosity of the lubricant has a large effect on bearing performance, as does its viscosity under atmospheric pressure.
X