Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Analyzing Field Failures of Engine Valve Springs in Presence of Non Metallic Inclusions by Applying Statistical and Fracture Mechanics Models

2009-04-20
2009-01-0528
The reliability of engine valve springs is a very important issue from the point of view of warranty. This paper presents a combined experimental and statistical analysis for predicting the fatigue limit of high tensile engine valve spring material in the presence of non-metallic inclusions. Experimentally, Fatigue tests will be performed on valve springs of high strength material at different stress amplitudes. A model developed by Murakami and Endo, which is based on the fracture mechanics approach, Extreme value statistics (GUMBEL Distribution) and Weibull Distribution will be utilized for predicting the fatigue limit and the maximum inclusion size from field failures. The two approaches, experimental and theoretical, will assist in developing the S-N curve for high tensile valve spring material in the presence of non-metallic inclusions.
Technical Paper

All-Wheel Drive Vehicle Energy Efficiency Evaluation

2004-03-08
2004-01-0864
All-wheel drive (AWD) vehicle performance considerably depends not only on total power amount needed for the vehicle motion in the given road/off-road conditions but also on the total power distribution among the drive wheels. In turn, this distribution is largely determined by the driveline system and its mechanisms installed in power dividing units. They are interwheel, interaxle reduction gears, and transfer cases. The paper presents analytical methods to evaluate the energy and, accordingly, fuel efficiency of vehicles with any arbitrary number of the drive wheels. The methods are based on vehicle power balance equations analysis and give formulas that functionally link the wheel circumferential forces with slip coefficients and other forces acting onto an AWD vehicle. The proposed methods take into consideration operational modes of vehicles that are tractive mode, load transportation, or a combination of both.
Technical Paper

An Adjustable Aluminum Differential

2001-03-05
2001-01-0883
The 2000 Formula SAE Team at Lawrence Technological University (LTU) has designed a chain driven, three-piece aluminum differential unique from past years. This innovative design introduces an adjustable chain mount replacing conventional shackles. Made completely of aluminum, this device moves the entire rear drive train. The gear set remains to be limited slip with a student designed housing. The idea of an aluminum housing with manufactured gear set is a continued project at LTU. After cutting approximately 33% from the weight of the 1999 differential, the 2000 is geared toward a simpler, and smaller design, easier assembly and lighter weight. After reading this brief overview, the idea of this paper is to provide an understanding of the reasoning behind the choices made on the LTU driveline team. FIGURE 1
Technical Paper

Evolution of Intake Design for a Small Engine Formula Vehicle

2001-03-05
2001-01-1211
To obtain a maximum range for usable torque, Helmholtz theory is utilized to tune an Honda CBR 600 cc engine. The design objectives were to: 1) Increase performance by reducing pressure losses in the entire intake system; 2) Maximize the restrictor's design to increase airflow at lower pressure drops; 3) Improve throttle response through throttle body design and reduction of turbulence when full open; 4) Utilize runner design to improve tuning effects as predicted by Helmholtz resonance theory and; 5) Incorporate a plenum design with equal air distribution to all four cylinders.
Technical Paper

The Study of a Cockpit with a Fixed Steering Wheel Position: Methods and Model

2003-06-17
2003-01-2180
An ergonomics study was conducted in a mock-up with a fixed steering wheel position. Drivers adjusted the seat and pedals to a comfortable position. A three-dimensional coordinate measurement machine (CMM) was used to measure the comfortable position of 21 participants. Proven test methods were used to collect the posture data. A model is described to assist in seat and pedal placement for cockpit design.
Technical Paper

Effectively Approaching and Designing a Suspension with Active Damping

2002-12-02
2002-01-3285
This paper discusses how to effectively design and set-up an ideal spring/damper combination in a low-mass open wheeled racecar to properly control vehicle handling and gain optimum performance of the system. The system that will be discussed is outfitted with a non-parallel, unequal length SLA suspension that was designed and raced at the 2001 Formula SAE competition. The focus of this paper will be more on how to choose an ideal suspension set-up for a low-mass open wheeled racecar, while considering the various variables that can affect the system as a whole. To properly design a suspension, a passive system will be used, and then the performance gains of a semi-active system will be introduced and discussed.
Technical Paper

Terrain Truck: Control of Wheel Rotational Velocities and Tire Slippages

2011-09-13
2011-01-2157
The dynamics of an AWD vehicle is determined by the interactions between the vehicle's wheels and the tire contact surface. Understanding and controlling these interactions drives the vehicle mobility and energy efficiency. In this paper new issues related to tire slippage control are addressed. The paper analytically demonstrates that two tires on the same axle with the same rotational speeds can have different slippages when the normal reaction and inflation pressure vary due to motion conditions. Hence, a new method is proposed to control the rotational velocity of the wheels in a way that provides the same slippages of the tires by accounting for changes in the normal load and tire inflation pressure. This approach is especially beneficial for vehicles with individual (electric) wheel drives which can be individually controlled by introducing the proposed algorithm for controlling both the vehicle linear velocity and the tire slippages.
Technical Paper

Fatigue Life Improvement through the “NOVA” Process

2013-04-08
2013-01-1400
The experimental methods focused on utilizing the newly developed NOVA induction heating and hardening manufacturing process as an adapted method to produce high performance engine valve springs. A detailed testing plan was used to evaluate the expected and theorized possibility for fatigue life enhancement. An industry standard statistical analysis method and tools were employed to objectively substantiate the findings. Fatigue cycle testing using NOVA induction-hardened racing valve springs made of ultra-high tensile material were compared to data for springs with traditional heat treatment and those with standard processing. The results were displayed using Wöhler and modified Haigh fatigue life diagrams. The final analysis suggests that NOVA processed springs have a seemingly slight, yet significant benefit in fatigue life of 5 - 7% over springs processed through a competing method.
Technical Paper

All-Wheel Driveline Mechatronic Systems: Principles of Wheel Power Management

2006-04-03
2006-01-0580
All-wheel driveline systems with electronic torque control on each and all wheels, torque vectoring and torque management devices, hybrid electro-mechanical systems, and individual electro (hydraulic) motors in the wheels have been gaining a bigger interest in the industry for recent years. The majority of automotive applications are in vehicle stability control that is performed by controlling the vehicle yaw moment. Some devices also improve vehicle traction performance. The proposed paper develops a methodology that includes the key-principles in all-wheel driveline systems design and is based on the wheel power management as a broader analytical approach. The proposed principles relate to the optimization of power distributions to the drive wheels in both rectilinear and curvilinear vehicle motion. Inverse dynamics is the basis for the developed methodology.
Technical Paper

Tire Longitudinal Elasticity and Effective Rolling Radii: Experimental Method and Data

2005-04-11
2005-01-1823
To evaluate traction and velocity performance and other operational properties of a vehicle requires data on some tire parameters including the effective rolling radius in the driven mode (no torque on a wheel), the effective radii in the drive mode (torque applied to the wheel), and also the tire longitudinal elasticity. When one evaluates vehicle performance, these parameters are extremely important for linking kinematic parameters (linear velocity and tire slip coefficient) with dynamic parameters (torque and traction net force) of a tired wheel. This paper presents an experimental method to determine the above tire parameters in laboratory facilities. The facilities include Lawrence Technological University's 4x4 vehicle dynamometer with individual control of each of the four wheels, Kistler RoaDyn® wheel force sensors that can measure three forces and three moments on a wheel, and a modern data acquisition system. The experimental data are also presented in the paper.
Technical Paper

Traction Control Applications in Engine Control

2000-12-04
2000-01-3464
Traction control is an electronic means of reducing the wheel spin caused by the application of excessive power for the valuable grip. Wheel spin can result in loss control of the car, reduce acceleration and cause tire wear. In the front wheel tire the loss grip is experienced as underwater, where the front of the car ‘pushes’ forward, not turning as much as the driver has exposed by turning the tearing. In the rear wheels slip causing oversteer, where the rear of the car swings around, turning much sharper than the driver anticipated. The result of all these problems is that the driver starts loosing control of the vehicle, which is undesirable. With the new design of the Traction Control System, the amount of the wheel slippage is precisely controlled. In racing, this means corner can be taken constantly quicker, with system applying the maximum power possible while the driver remains in total control.
Technical Paper

Design of Formula SAE Suspension

2002-12-02
2002-01-3310
Formula SAE is a Student project that involves a complete design and fabrication of an open wheel formula-style racecar. This paper will cover the suspension geometry and its components, which include the control arm, uprights, spindles, hubs, and pullrods. The 2002 Lawrence Technological Universities Formula SAE car will be used as an example throughout this paper.
Technical Paper

Experimental Investigation on the Influence of Pressure Wheel Design on Heat Dissipation for a Laser Robotic End of Arm Tooling

2018-04-03
2018-01-1235
The initiative of this paper is focused on improving the heat dissipation from the pressure wheel of a laser welding assembly in order to achieve a longer period of use. The work examines the effects of different geometrical designs on the thermal performance of pressure wheel assembly during a period of cooling time. Three disc designs were manufactured for testing: Design 1 – a plain wheel, Design 2 – a pierced wheel, and Design 3 – a wheel with ventilating vanes. All of the wheels were made of carbon steel. The transient thermal reaction were compared. The experimental results indicate that the ventilated wheel cools down faster with the convection in the ventilated channels, while the solid plain wheel continues to possess higher temperatures. A comparison among the three different designs indicates that the Design 3 has the best cooling performance.
Technical Paper

A Simulation Model for an Online Corrective Look-Ahead Road Profiling System (CLARPS) for Active Suspension Applications

2024-04-09
2024-01-2758
Online road profiling capability is required for automotive active suspension systems to be realized in a commercial landscape. The challenges that impede the realization of these systems include a profiler’s ability to maintain an optimal resolution of the oncoming road profile (spatial frequency). Shifting of the profile measurement frame of reference due to body motion disturbances experienced by the vehicle also negatively impacts profiling capability. This work details the early development of a corrective look-ahead road profiling system (CLARPS) and its control logic. The CLARPS components are introduced and additional focus will be given to the development of the angle generating function (AGF) and how it drives the ability of the system to optimize look-ahead viewing angles for the best spatial frequency resolution of a road profile. The CLARPS simulation environment is demonstrated with numerical comparison of simulated road profiles at varying vehicle speeds.
X