Refine Your Search

Topic

Author

Search Results

Technical Paper

Design Optimization of Sandwich Composite Armors for Blast Mitigation Using Bayesian Optimization with Single and Multi-Fidelity Data

2020-04-14
2020-01-0170
The most common and lethal weapons against military vehicles are the improvised explosive devices (IEDs). In an explosion, critical cabin’s penetrations and high accelerations can cause serious injuries and death of military personnel. This investigation uses single and multi-fidelity Bayesian optimization (BO) to design sandwich composite armors for blast mitigation. BO is an efficient methodology to solve optimization problems that involve black-box functions. The black-box function of this work is the finite element (FE) simulation of the armor subjected to blast. The main two components of BO are the surrogate model of the black-box function and the acquisition function that guides the optimization. In this investigation, the surrogate models are Gaussian Process (GP) regression models and the acquisition function is the multi-objective expected improvement (MEI) function. Information from low and high fidelity FE models is used to train the GP surrogates.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Journal Article

Modeling and Simulation of a Hydraulic Steering System

2008-10-07
2008-01-2704
Conventional hydraulic steering systems keep improving performance and driving comfort by introducing advanced features via mechanical design. The ever increasing mechanical complexity requires the advanced modeling and simulation technology to mitigate the risks in the early stage of the development process. In this paper, we focus on advanced modeling tools environment with an example of a load sensing hydraulic steering system. The complete system architecture is presented. Analytical equations are developed for a priority valve and a steering control unit as the foundation of modeling. The full version of hydraulic steering system model is developed in Dymola platform. In order to capture interaction between steering and vehicle, the co-simulation platform between the hydraulic steering system and vehicle dynamics is established by integrating Dymola, Carsim and Simulink.
Technical Paper

Indirect Measurement of Tire Slip and Understeer/Oversteer

2006-12-05
2006-01-3605
This paper presents a method for indirect measurement of tire slip angles from chassis acceleration, yaw rate, and steer angle measurements. The chassis is assumed to be rigid so that acceleration data can be integrated to estimate velocities of the front and rear of the vehicle, from which slip angles can be predicted. The difference in front and rear slip angles is indicative of vehicle oversteer/understeer. Understeer data can then be correlated with position on the track to better understand vehicle handling behavior, aiding the tuning process. The technique is presented, and shown to work well with simulated data, even when the data is corrupted with up to 20% noise. Therefore, the inversion process presented here is theoretically sound. However, when the technique is applied to measured data from race cars, it is shown to be inaccurate. One suspected problem is the difficulty of getting accurate yaw rate data.
Technical Paper

Modeling and Simulation of an Electric Warship Integrated Engineering Plant

2006-11-07
2006-01-3050
A layered approach to the simulation of dynamically interdependent systems is presented. In particular, the approach is applied to the integrated engineering plant of a notional all-electric warship. The models and parameters of the notional ship are presented herein. This approach is used to study disruptions to the integrated engineering plant caused by anti-ship missiles. Example simulation results establish the effectiveness of this approach in examining the propagation of faults and cascading failures throughout a dynamically interdependent system of systems.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Simulation of MADMEL Power Systems Components

1998-04-21
981258
Detailed computer models of system components for More Electric Aircraft have been developed using the Advanced Control System Language (ACSL) and its graphical front-end, Graphic Modeller. Among the devices modeled are a wound-rotor synchronous generator with parallel bridge-rectifier outputs, a switched-reluctance generator, and various loads including a DC-DC converter, an inverter-driven induction motor, and an electro-hydrostatic actuator. Results from the simulations are presented together with corroborating experimental test results.
Technical Paper

An Automated State Model Generation Algorithm for Simulation/Analysis of Power Systems with Power Electronic Components

1998-04-21
981256
In this paper, a recently-developed algorithmic method of deriving the state equations of power systems containing power electronic components is described. Therein the system is described by the pertinent branch parameters and the circuit topology; however, unlike circuit-based algorithms, the difference equations are not implemented at the branch level. Instead, the composite system state equations are established. A demonstration of the computer implementation of this algorithm to model a variable-speed, constant-frequency aircraft generation system is described. Because of the large number of states and complexity of the system, particular attention is placed on the development of a model structure which provides optimal simulation efficiency.
Technical Paper

Computer Modeling and Simulation of a Tracked Log Skidder with Different Grapple Configurations

1998-09-14
981979
A track-type grapple log skidder was dynamically modeled to allow machine modification by computer to determine the effects of these modifications on the operation of the machine in the forest. The model consisted of an undercarriage, power train, log/drag force, and logging equipment (arch and grapple). This skidder had three types of logging attachments: winch, swinging boom (grapple), and single-function arch (grapple). Each was modeled and simulated under various conditions. The dynamic model of the skidder can be used to analyze its drawbar pull capability and lateral stability with various log weights and soil types on steep slopes. Validation of this model is needed later.
Technical Paper

Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat

2009-04-20
2009-01-0806
Operation & support costs for military weapon systems accounted for approximately 3/5th of the $500B Department of Defense budget in 2006. In an effort to ensure readiness and decrease these costs for ground vehicle fleets, health monitoring technologies are being developed for Condition-Based Maintenance of individual vehicles within a fleet. Dynamics-based health monitoring is used in this work because vibrations are a passive source of response data, which are global functions of the mechanical loading and properties of the vehicle. A common way of detecting faults in mechanical equipment, such as the suspension and chassis of a ground vehicle, is to compare measured operational vibrations to a reference (or healthy) signature to detect anomalies.
Technical Paper

Plastic Waste Processing and Volume Reduction for Resource Recovery and Storage in Space

2003-07-07
2003-01-2369
This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions. The heat melt compactor can handle wastes with a significant plastic composition and minimize crew interaction. The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such as plastic food packaging and trash are compacted manually and wrapped in duct taped “footballs” by the astronauts. Much of the waste is simply loaded into the empty Russian Progress spacecraft that is used to bring supplies to ISS. The progress spacecraft and its contents are intentionally burned up in the earth's atmosphere during reentry. This manual method of trash management on ISS is a wasteful use of crew time and does not transition well to far term missions.
Technical Paper

Development of Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization and Analysis of Desiccating Membrane

2003-07-07
2003-01-2367
The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane-integrated, adsorption processor for CO2 removal and compression in closed-loop air revitalization systems. The membrane module removes water from the feed, passing it directly into the processor's exhaust stream; it replaces the desiccant beds in the current four-bed molecular sieve system, which must be thermally regenerated. Moreover, in the new processor, CO2 is removed and compressed in a single two-stage unit. This processor will use much less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems.
Technical Paper

ARPCS2AT2: A Tool for Atmospheric Pressure and Composition Control Analysis

2003-07-07
2003-01-2437
A generalized computer program for analysis of pressure and composition in multiple volume systems has been under development by the National Aeronautics and Space Administration (NASA) since 1976. This paper describes the most recent developments in the program. These improvements include the expansion of the program to nine volumes, improvements to the model of the International Space Station (ISS) carbon dioxide removal system, and addition of a detailed Sabatier carbon dioxide reduction mode. An evaluation of the feasibility of adding of trace contaminant tracking was also performed. This paper will also present the results of an analysis that compares model predictions with ISS flight data for carbon dioxide (CO2) maintenance.
Technical Paper

The AMS-02 Thermal Control System Design

2003-07-07
2003-01-2585
This paper reports on the Thermal Control System (TCS) of the AMS-02 (Alpha Magnetic Spectrometer). AMS-02 will be installed on the International Space Station (ISS) Starboard segment of the Truss in 2005, where it will acquire data for at least three years. The AMS-02 payload has a mass of about 6700 kg, a power budget of 2kW and consists of 5 different instruments, with their associated electronic equipment. Analytical integration of the AMS-02 thermal mathematical model is described in the paper, together with the main thermal design features. Stringent temperature stability requirements have been satisfied, providing a stable thermal environment that allows for easier calibration of the detectors. The overall thermal design uses a combination of standard and innovative concepts to fit specific instruments needs.
Technical Paper

International Space Station (ISS) Automated Safing Responses to Fire Emergencies

2003-07-07
2003-01-2595
Environmental Control and Life Support (ECLS) functionality aboard the International Space Station (ISS) includes responses to emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions during the emergencies. This paper focuses on the ISS response to fire emergencies. It includes the integrated ISS automatic vehicle response and crew actions for fire. Philosophies covered include fire detection, fire response, and post-fire atmosphere recovery. Current responses and crew actions are discussed for the existing vehicle configuration on-orbit. This includes modules in the assembly sequence up to and including the Docking Compartment (DC1). Possible future improvements to the fire emergency responses are also described.
Technical Paper

Development of a Temperature-Swing Adsorption Compressor for Carbon Dioxide

2003-07-07
2003-01-2627
A closed-loop air revitalization system requires continuous removal of CO2 from the breathing air and an oxygen recovery system to recover oxygen from the waste CO2. Production of oxygen from CO2 is typically achieved by reacting CO2 with hydrogen in a reduction unit such as a Sabatier reactor. The air revitalization system of International Space Station (ISS) currently operates on an open loop mode where CO2 is being vented into the space vacuum due to lack of a Sabatier Reactor. A compressor and a storage device are required to interface the Carbon Dioxide Removal Assembly (CDRA) and the Sabatier reactor. This compressor must acquire the low-pressure CO2 from CDRA and provide it at a high enough pressure to the Sabatier reactor. The compressor should ensure independent operations of CDRA and Sabatier reactor at all times, even when their operating schedules are not synchronized.
Technical Paper

The Advanced Life Support Research and Technology Development Metric for Government Fiscal Year 2002

2003-07-07
2003-01-2632
The Advanced Life Support Research and Technology Development Metric, or Metric, for Government Fiscal Year 2002 provides a measure of the equivalent system mass for a life support system using the “best” available advanced technologies compared to the equivalent system mass for a life support system using technologies from International Space Station. The present paper details the assumed life support system configurations and algorithm used to compute the Metric. Additionally, various peripheral issues of importance are mentioned.
Technical Paper

Delivery of Servicing & Performance Checkout Equipment to the International Space Station Joint Airlock to Support Extravehicular Activity

2002-07-15
2002-01-2366
In July 2001, during Space Shuttle Flight 7A, the Joint Airlock was added to the International Space Station (ISS) and utilized in performing the first extravehicular activity (EVA) from the ISS. Unlike previous airlock designs built by the United States or Russia, the Joint Airlock provides the ISS with the unique capability for performing EVAs utilizing either U.S. or Russian spacesuits. This EVA capability is made possible by the use of U.S.- and Russian- manufactured hardware items referred to as Servicing and Performance Checkout Equipment (SPCE) located in both the Joint Airlock's Equipment and Crew Locks. This paper provides a description for each SPCE item along with a summary of the requirements and capabilities provided in support of EVA events from the ISS Joint Airlock.
Technical Paper

ISS ECLS System Analysis Software Tools - An Overview and Assessment

2002-07-15
2002-01-2343
There have been many software programs that have provided simulations for the performance and operation of the Environmental Control and Life Support Subsystems (ECLSS) in the International Space Station (ISS) and in the Space Shuttle. These programs have been applied for purposes in system analysis, flight analysis, and ECLSS studies. Flight and system analysis tasks are deemed important. Therefore, more manpower and resources added for such work is considered beneficial. System analysis covers design and trouble-shooting, the validation of Flight Rules, and the contingency analysis. During the engineering design phase, ECLSS modelers predict the performance and interaction of units in a process train. Simulation results can be useful in estimating equipment sizes and costs. This article has also used two examples to illustrate that many Flight Rules need to be validated using properly selected integrated programs.
X