Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

In-process Monitoring and Control of Surface Roughness

1998-06-02
981850
This paper presents in-process monitoring and control based on a novel ultrasonic sensing technique. The developed ultrasonic system provides non-contact measurement of surface roughness, which is applicable to wet machining environments. The utility and robustness of the technique are demonstrated through applications to different processes and materials. In-process surface roughness monitoring capability of the system is also shown along with its potential to monitor flank wear conditions. The result of in-process surface roughness control implementation based on the developed technique shows the control scheme is able to maintain consistent surface roughness values regardless of the tool wear state.
Technical Paper

Modeling of Nonlinear Elastomeric Mounts. Part 1: Dynamic Testing and Parameter Identification

2001-03-05
2001-01-0042
A methodology for modeling elastomeric mounts as nonlinear lumped parameter models is discussed. A key feature of this methodology is that it integrates dynamic test results under different conditions into the model. The first step is to model the mount as a linear model that is simple but reproduces accurately results from dynamic tests under small excitations. Frequency Response Functions (FRF) enables systematic calculation of the parameters for the model. Under more realistic excitation, the mount exhibits non-linearity, which is investigated in the next step. For nonlinear structures, a simple and intuitive method is to use time-domain force-displacement (F-x) curves. Experiments to obtain the F-x curves involve controlling the displacement excitation and measuring the induced forces. From the F-x curves, stiffness and damping parameters are obtained with an optimization technique.
Technical Paper

A Detailed Synchronous Machine Model

2002-10-29
2002-01-3205
A synchronous machine model is set forth that simultaneously incorporates magnetizing path saturation, leakage saturation, and transfer function representations of the rotor circuits. A parameter identification procedure consisting of voltage step tests as well as standstill frequency response tests is described. The model's predictions are validated using the Naval Combat Survivability Generation and Propulsion test bed.
Technical Paper

Active Vibration Damping for Construction Machines Based on Frequency Identification

2016-09-27
2016-01-8121
Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
Technical Paper

THE EFFECT OF PROPLETS AND BI-BLADES ON THE PERFORMANCE AND NOISE OF PROPELLERS

1981-02-01
810600
A analytical technique for predicting the aerodynamic performance of propellers with tip devices (proplets) using vortex lattice method shows that the ideal efficiency of a fixed diameter propeller can be improved by 1-5%. By suitable orientation and sweep of the proplet, the noise analysis method presented predicts that propellers with tip devices will have approximately the same noise as propellers without tip devices. Therefore proplets can be added to a fixed diameter propeller to improve the efficiency with no increase in noise or the noise may be reduced by decreasing the diameter with no loss in aerodynamic efficiency.
Technical Paper

The Analysis of Counter-Rotating Propeller Systems

1985-04-01
850869
A vortex lattice method for the aerodynamic analysis of counter-rotation propellers was developed. This model along with an unsteady Sears analysis for correcting the quasi-steady loadings that are obtained from the vortex lattice model were used to predict the performance of counter-rotation propeller systems. The method developed shows good correlation with experimental results. The investigation into the unsteady loadings on each of the propellers indicates that significant variations in loading occur due to the unsteady flow and due to the propeller blade passage. These variations were found to be as high as 17 percent of the mean value. The parametric studies that were performed indicate that reducing the rear propeller's diameter or rotational speed results in a loss of efficiency.
Technical Paper

Analysis of Widespread Fatigue Damage in Lap Joints

1999-04-20
1999-01-1586
This paper describes research to analyze widespread fatigue damage in lap joints. The particular objective is to determine when large numbers of small cracks could degrade the joint strength to an unacceptable level. A deterministic model is described to compute fatigue crack growth and residual strength of riveted panels that contain multiple cracks. Fatigue crack growth tests conducted to evaluate the predictive model are summarized, and indicate good agreement between experimental and numerical results. Monte Carlo simulations are then performed to determine the influence of statistical variability on various analysis parameters.
Technical Paper

Human Factors Best Practices

1999-08-10
1999-01-2977
Throughout the industry, organizations struggle with the task of implementing effective human factors programs aimed at reducing maintenance errors. Almost universally, many barriers have frustrated these efforts. In 1998 and 1999, the National Transportation Safety Board sponsored two workshops designed at identifying barriers to the implementation of human factors programs and to explore what was working and what was not working among the many industry efforts. This paper explores the findings of these workshops. In addition, it will report findings of Purdue University studies that reveal a rapid deterioration of even the most successful human factors programs. The research findings disclose several “disconnects” within most organizations which rapidly negate the positive effects of successful human factors and error management training and nullify many proactive human factors programs.
Technical Paper

Excitation Strategies for a Wound Rotor Synchronous Machine Drive

2014-09-16
2014-01-2138
In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
Technical Paper

Measured Interfacial Residual Strains Produced by In-Flight Ice

2019-06-10
2019-01-1998
The formation of ice on aircraft is a highly dynamic process during which ice will expand and contract upon freezing and undergoing changes in temperature. Finite element analysis (FEA) simulations were performed investigating the stress/strain response of an idealized ice sample bonded to an acrylic substrate subjected to a uniform temperature change. The FEA predictions were used to guide the placement of strain gages on custom-built acrylic and aluminum specimens. Tee rosettes were placed in two configurations adjacent to thermocouple sensors. The specimens were then placed in icing conditions such that ice was grown on top of the specimen. It was hypothesized that the ice would expand on freezing and contract as the temperature of the interface returned to the equilibrium conditions.
Technical Paper

Fatigue Damage Modeling Approach Based on Evolutionary Power Spectrum Density

2019-04-02
2019-01-0524
Fatigue damage prediction approaches in both time and frequency domains have been developed to simulate the operational life of mechanical structures under random loads. Fatigue assessment of mechanical structures and components subjected to those random loads is increasingly being addressed by frequency domain approaches because of time and cost savings. Current frequency-based fatigue prediction methods focus on stationary random loadings (stationary Power Spectral Density), but many machine components, such as jet engines, rotating machines, and tracked vehicles are subjected to non-stationary PSD conditions under real service loadings. This paper describes a new fatigue damage modeling approach capable of predicting fatigue damage for structures exposed to non-stationary (evolutionary) PSD loading conditions where the PSD frequency content is time-varying.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Journal Article

A Computational Multiaxial Model for Stress-Strain Analysis of Ground Vehicle Notched Components

2017-03-28
2017-01-0329
Driveline and suspension notched components of off-road ground vehicles often experience multiaxial fatigue failures along notch locations. Large nominal load histories may induce local elasto-plastic stress and strain responses at the critical notch locations. Fatigue life prediction of such notched components requires detailed knowledge of local stresses and strains at notch regions. The notched components that are often subject to multiaxial loadings in services, experience complex stress and strain responses. Fatigue life assessment of the components utilizing non-linear Finite Element Analysis (FEA) require unfeasibly inefficient computation times and large data. The lack of more efficient and effective methods of elasto-plastic stress-strain calculation may lead to the overdesign or earlier failures of the components or costly experiments and inefficient non-linear FEA.
X