Refine Your Search

Topic

Author

Search Results

Journal Article

Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN)

2009-09-13
2009-24-0028
One of the challenges with conventional diesel engines is the emission of soot. To reduce soot emission whilst maintaining fuel efficiency, an important pathway is to improve the fuel-air mixing process. This can be achieved by creating small droplets in order to enhance evaporation. Furthermore, the distribution of the droplets in the combustion chamber should be optimized, making optimal use of in-cylinder air. To deal with these requirements a new type of injector is proposed, which has a porous nozzle tip with pore diameters between 1 and 50 μm. First, because of the small pore diameters the droplets will also be small. From literature it is known that (almost) no soot is formed when orifice diameters are smaller than 50 μm. Second, the configuration of the nozzle can be chosen such that the whole cylinder can be filled with fine droplets (i.e., spray angle nearly 180°).
Journal Article

Oxygenated Fuel Considerations for In-Shop Fuel System Leak Testing Hazards

2008-04-14
2008-01-0554
Because of domestic production from renewable sources and their clean burning nature, alcohols, especially ethanol, have seen growing use as a blending agent and replacement for basic hydrocarbons in gasoline. The increasing use of alcohol in fuels raises questions on the safety of these fuels under certain non-operational situations. Modern vehicles use evaporative emission control systems to minimize environmental emissions of fuel. These systems must be relatively leak-free to function properly and are self-diagnosed by the vehicle On-Board Diagnostic system. When service is required, the service leak testing procedures may involve forcing test gases into the “evap” system and also exposure of the fuel vapors normally contained in the system to atmosphere. Previous work has discussed the hazards involved when performing shop leak testing activities for vehicles fuelled with conventional hydrocarbon gasoline [1, 2].
Journal Article

Direct Injection of Diesel-Butane Blends in a Heavy Duty Engine

2011-12-06
2011-01-2400
Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles. These (port fuel) systems either vaporize the liquid fuel and then mix it with intake air, or inject fuel into the engine's intake ports. While this concept offers significant fuel cost reductions, for aftermarket certification and large-scale OEM use some concerns are present. Unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions are known to be high because of premixed charge getting trapped into crevices and possibly being blown through during valve-overlap. Apart from the higher emission levels, this also limits fuel efficiency and therefore cost savings.
Journal Article

Lignin Derivatives as Potential Octane Boosters

2015-04-14
2015-01-0963
Owing to environmental and health concerns, tetraethyl lead was gradually phased out from the early 1970's to mid-1990's in most developed countries. Advances in refining, leading to more aromatics (via reformate) and iso-paraffins such as iso-octane, along with the introduction of (bio) oxygenates such as MTBE, ETBE and ethanol, facilitated the removal of lead without sacrificing RON and MON. In recent years, however, legislation has been moving in the direction of curbing aromatic and olefin content in gasoline, owing to similar concerns as was the case for lead. Meanwhile, concerns over global warming and energy security have motivated research into renewable fuels. Amongst which are those derived from biomass. The feedstock of interest in this study is lignin, which, together with hemicellulose and cellulose, is amongst the most abundant organic compounds on the planet.
Technical Paper

A Study of a Glow Plug Ignition Engine by Chemiluminescence Images

2007-07-23
2007-01-1884
An experimental study of a glow plug engine combustion process has been performed by applying chemiluminescence imaging. The major intent was to understand what kind of combustion is present in a glow plug engine and how the combustion process behaves in a small volume and at high engine speed. To achieve this, images of natural emitted light were taken and filters were applied for isolating the formaldehyde and hydroxyl species. Images were taken in a model airplane engine, 4.11 cm3, modified for optical access. The pictures were acquired using a high speed camera capable of taking one photo every second or fourth crank angle degree, and consequently visualizing the progress of the combustion process. The images were taken with the same operating condition at two different engine speeds: 9600 and 13400 rpm. A mixture of 65% methanol, 20% nitromethane and 15% lubricant was used as fuel.
Technical Paper

Effect of Temperature Stratification on the Auto-ignition of Lean Ethanol/Air Mixture in HCCI engine

2008-06-23
2008-01-1669
It has been known from multi-zone simulations that HCCI combustion can be significantly affected by temperature stratification of the in-cylinder gas. With the same combustion timing (i.e. crank angles at 50% heat release, denoted as CA50), large temperature stratification tends to prolong the combustion duration and lower down the in-cylinder pressure-rise-rate. With low pressure-rise-rate HCCI engines can be operated at high load, therefore it is of practical importance to look into more details about how temperature stratification affects the auto-ignition process. It has been realized that multi-zone simulations can not account for the effects of spatial structures of the stratified temperature field, i.e. how the size of the hot and cold spots in the temperature field could affect the auto-ignition process. This question is investigated in the present work by large eddy simulation (LES) method which is capable of resolving the in-cylinder turbulence field in space and time.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

2008-04-14
2008-01-0008
Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

Modeling and Simulation of Mg AZ80 Alloy Forging Behaviour

2008-04-14
2008-01-0214
Magnesium AZ80 is a medium strength alloy with good corrosion resistance and very good forging capability which offers an affordable commercial alternative to the Mg ZK60 alloy used for wheels in racing cars. Extending the market of Mg AZ80 alloy to automotive wheels requires a better understanding of macro- and micro-properties of this structural material, especially its forging behaviour. In this study the deformation behaviour of Mg AZ80 alloy is characterized by uniaxial compression tests from ambient to 420°C at a variety of strain rates using a Gleeble 1500 simulator. A constitutive relationship coupling materials work hardening and strain rate and temperature dependences is calibrated based on test results. This flow behaviour is input into a finite element model to simulate the forging operation of an automotive wheel with ABAQUS codes.
Technical Paper

A Case Study for Life Cycle Assessment (LCA) as an Energy Decision Making Tool: The Production of Fuel Ethanol from Various Feedstocks

1998-11-30
982205
Life Cycle Analysis (LCA) considers the key environmental impacts for the entire life cycle of alternative products or processes in order to select the best alternative. An ideal LCA would be an expensive and time consuming process because any product or process typically involves many interacting systems and a considerable amount of data must be analysed for each system. Practical LCA methods approximate the results of an ideal analysis by setting limited analysis boundaries and by accepting some uncertainty in the data values for the systems considered. However, there is no consensus in the LCA field on the correct method of selecting boundaries or on the treatment of data set uncertainty. This paper demonstrates a new method of selecting system boundaries for LCA studies and presents a brief discussion on applying Monte Carlo Analysis to treat the uncertainty questions in LCA.
Technical Paper

Uncooled EGR as a Means of Limiting Wall-Wetting under Early Direct Injection Conditions

2009-04-20
2009-01-0665
Collision of injected fuel spray against the cylinder liner (wall-wetting) is one of the main hurdles that must be overcome in order for early direct injection Premixed Charge Compression Ignition (EDI PCCI) combustion to become a viable alternative for conventional DI diesel combustion. Preferably, the prevention of wall-wetting should be realized in a way of selecting appropriate (most favorable) operating conditions (EGR level, intake temperature, injection timing-strategy etc.) rather than mechanical modification of an engine (combustion chamber shape, injector replacement etc.). This paper presents the effect of external uncooled EGR (different fraction) on wall-wetting issues specified by two parameters, i.e. measured smoke number (experiment) and liquid spray penetration (model).
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

Optimization of Operating Conditions in the Early Direct Injection Premixed Charge Compression Ignition Regime

2009-09-13
2009-24-0048
Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) is a widely researched combustion concept, which promises soot and CO2 emission levels of a spark-ignition (SI) and compression-ignition (CI) engine, respectively. Application of this concept to a conventional CI engine using a conventional CI fuel faces a number of challenges. First, EDI has the intrinsic risk of wall-wetting, i.e. collision of fuel against the combustion chamber periphery. Second, engine operation in the EDI regime is difficult to control as auto-ignition timing is largely decoupled from fuel injection timing. In dual-mode PCCI engines (i.e. conventional Dl at high loads) wall-wetting should be prevented by selecting appropriate (most favorable) operating conditions (EGR level, intake temperature, injection timing-strategy etc.) rather than by redesign of the engine (combustion chamber shape, injector replacement etc.).
Technical Paper

Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements

2003-10-27
2003-01-3147
In-cylinder flow measurements, conventional swirl measurements and CFD-simulations have been performed and then compared. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. Bowditch type optical access and flat piston is used. The cylinder head was also measured in a steady-flow impulse torque swirl meter. From the two-dimensional flow-field, which was measured in the interval from -200° ATDC to 65° ATDC at two different positions from the cylinder head, calculations of the vorticity, turbulence and swirl were made. A maximum in swirl occurs at about 50° before TDC while the maximum vorticity and turbulence occurs somewhat later during the compression stroke. The swirl centre is also seen moving around and it does not coincide with the geometrical centre of the cylinder. The simulated flow-field shows similar behaviour as that seen in the measurements.
Technical Paper

Prediction Tool for the Ion Current in SI Combustion

2003-10-27
2003-01-3136
In this work, constant volume combustion is studied using a zero-dimensional FORTRAN code, which is a wide-ranging chemical kinetic simulation that allows a closed system of gases to be described on the basis of a set of initial conditions. The model provides an engine- or reactor-like environment in which the engine simulations allow for a variable system volume and heat transfer both to and from the system. The combustion chamber is divided into two zones as burned and unburned ones, which are separated by an assumed thin flame front in the combustion model used for this work. Equilibrium assumptions have been adopted for the modeling of the thermal ionization, where Saha's equation was derived for singly ionized molecules. The investigation is focused on the thermal ionization of NO as well as for other species. The outputs generated by the model are temperature profiles, species concentration profiles, ionization degree and an electron density for each zone.
Technical Paper

Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel

2001-03-05
2001-01-0651
Although there seems to be a consensus regarding the low emission potential of DME, there are still different opinions about why the low NOx emissions can be obtained without negative effects on thermal efficiency. Possible explanations are: The physical properties of DME affecting the spray and the mixture formation Different shape and duration of the heat release in combination with reduced heat losses In this paper an attempt is made to increase the knowledge of DME in relation to diesel fuel with respect to heat release and NOx formation. The emphasis has been to create injection conditions as similar as possible for both fuels. For that purpose the same injection system (CR), injection pressure (270 bar), injection timing and duration have been used for the two fuels. The only differences were the diameters of the nozzle holes, which were chosen to give the same fuel energy supply, and the physical properties of the fuels.
Technical Paper

Laser-Rayleigh Imaging of DME Sprays in an Optically Accessible DI Diesel Truck Engine

2001-03-05
2001-01-0915
Laser-Rayleigh imaging has been employed to measure the relative fuel concentration in the gaseous jet region of DME sprays. The measurements were performed in an optically accessible diesel truck engine equipped with a common rail injection system. A one-hole nozzle was used to guarantee that the recorded pressure history was associated with the heat release in the imaged spray. To compensate for the low compression ratio in the modified engine the inlet air was preheated. Spray development was studied for two levels of preheating, from the start of injection to the point where all fuel was consumed. The results indicate that there is a strong correlation between the amount of unburned fuel present in the cylinder and the rate of heat release at a given time. The combustion can not be described as purely premixed or purely mixing-controlled at any time, but always has an element of both. After all fuel appears to have vanished there is still an extended period of heat release.
Technical Paper

Early Swedish Hot-Bulb Engines - Efficiency and Performance Compared to Contemporary Gasoline and Diesel Engines

2002-03-04
2002-01-0115
“Hot Bulb engines” was the popular name of the early direct injected 2-stroke oil engine, invented and patented by Carl W. Weiss 1897. This paper covers engines of this design, built under license in Sweden by various manufacturers. The continuous development is demonstrated through examples of different combustion chamber designs. The material is based on official engine performance evaluations on stationary engines and farm tractors from 1899 to 1995 made by the National Machinery Testing Institute in Sweden (SMP). Hot-bulb, diesel and spark ignited engines are compared regarding efficiency, brake mean effective pressure and specific power (power per displaced volume). The evaluated hot-bulb engines had a fairly good efficiency, well matching the contemporary diesel engines. At low mean effective pressures, the efficiency of the hot-bulb engines was even better than that of subsequent diesel engines.
Technical Paper

The Potential of Using the Ion-Current Signal for Optimizing Engine Stability - Comparisons of Lean and EGR (Stoichiometric) Operation

2003-03-03
2003-01-0717
Ion current measurements can give information useful for controlling the combustion stability in a multi-cylinder engine. Operation near the dilution limit (air or EGR) can be achieved and it can be optimized individually for the cylinders, resulting in a system with better engine stability for highly diluted mixtures. This method will also compensate for engine wear, e.g. changes in volumetric efficiency and fuel injector characteristics. Especially in a port injected engine, changes in fuel injector characteristics can lead to increased emissions and deteriorated engine performance when operating with a closed-loop lambda control system. One problem using the ion-current signal to control engine stability near the lean limit is the weak signal resulting in low signal to noise ratio. Measurements presented in this paper were made on a turbocharged 9.6 liter six cylinder natural gas engine with port injection.
Technical Paper

Measuring Turbulent Flame Growth by Visualization

1992-02-01
920184
High speed schlieren video and pressure trace analyses were used to study the effects of turbulence on burning velocity in a fixed volume combustion chamber. Lean methane-air mixtures of equivalence ratios of 0.76 and 0.96 were ignited at 1 atm and 23°C. Schlieren images of flame growth were recorded on video at 2000 frames per second while combustion chamber pressure was simultaneously recorded. The turbulence intensity at ignition was set at 0 m/s to 4 m/s intensity with integral scale around 7.6 mm by pulling a perforated plate across the chamber prior to ignition. In the analysis, the turbulence parameters were adjusted for the effect of decay and rapid distortion in a closed vessel during combustion. Results of both video and pressure trace analyses show a linear relationship between turbulent burning velocity and turbulence intensity as expected. Moderate changes in equivalence ratio had a negligible effect on this relationship.
Technical Paper

Injection of Fuel at High Pressure Conditions: LES Study

2011-09-11
2011-24-0041
This paper presents a large eddy simulation study of the liquid spray mixing with hot ambient gas in a constant volume vessel under engine-like conditions with the injection pressure of 1500 bar, ambient density 22.8 kg/m₃, ambient temperature of 900 K and an injector nozzle of 0.09 mm. The simulation results are compared with the experiments carried out by Pickett et al., under similar conditions. Under modern direct injection diesel engine conditions, it has been argued that the liquid core region is small and the droplets after atomization are fine so that the process of spray evaporation and mixing with the air is controlled by the heat and mass transfer between the ambient hot gas and central fuel flow. To examine this hypothesis a simple spray breakup model is tested in the present LES simulation. The simulations are performed using an open source compressible flow solver, in OpenFOAM.
X