Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

Design and Development of an Ultra-Low Friction and High Power-Density Diesel for the Indian Market

2020-04-14
2020-01-0834
This paper explains the methodology to design a high power-density diesel engine capable of 180 bar peak firing pressure yet achieving the lowest level of mechanical friction. The base engine architecture consists of an 8 mm crank-offset which is an optimized value to have the lowest piston side forces. The honing specification is changed from a standard plateau honing to an improved torque plate slide honing with optimized surface finish values. The cumulative tangential force of the piston rings is reduced to an extreme value of 28.5 N. A rectangular special coated top ring and a low-friction architecture oil ring are used to reduce the friction without increasing the blow-by and oil consumption. A special low-friction coating is applied on the piston skirt in addition to the optimized skirt profile to have reduced contact pressure. The piston pin is coated with diamond-like carbon (DLC) coating to have the lowest friction.
Technical Paper

Spot Weld Fatigue Correlation Improvement in Automotive Structures Using Stress Based Approach with Contact Modelling

2020-04-14
2020-01-0182
In automotive Body-In-White (BIW) structures, stiffness and the fatigue behavior is greatly influenced by the properties of its joints. Spot welding is one of the most widely used process for joining of sheet metals in BIW. Spot weld fatigue life under Accelerated Durability Test (ADT) is crucial for durability performance of BIW structures. Experience of BIW validations highlighted more number of spot weld failures in CAE when compared to actual tests. Hence, lot of iterations in the form of design modifications are required to be carried out to make these spot welds meet the targets which increases design & development time as well as cost. Current practice uses force-based approach for predicting spot weld fatigue life in CAE. To improve the spot weld fatigue life correlation, extensive study has been carried out on the approaches used for calculating spot weld fatigue life, namely force & stress-based approaches.
Technical Paper

Design of a Single Rail Internal Gear Shift System for a 5 Speed Manual Transmission

2013-04-08
2013-01-1771
This paper presents the detailed design of a Single Rail Internal Gear Shift System for a 5-speed manual transmission of a load carrier vehicle. Gear shifting in manual transmissions is achieved by actuating a synchronizer sleeve and engaging it with the required gear. Actuation of synchronizer sleeves is effected by gear shift forks which are supported in the transmission by a rail/shaft. Conventional 5-speed transmissions use Multi Rail Gear shift systems, wherein each of the forks viz. Fork 1-2, Fork3-4 & Fork 5th, for actuating the synchronizer sleeves, are supported by and fixed to individual rails. This paper presents the design of a Single Rail Gear shift system, wherein all the gear shift forks will be supported on a common rail/shaft, thus making the entire system compact and reducing the system weight. The Single Rail, in the proposed design, apart from supporting the three forks, also serves to actuate the Reverse Gear, which is of sliding mesh type in this case.
Technical Paper

Investigation on Wiping Noises and NVH Design Consideration in a Wiper System

2013-05-13
2013-01-1916
As automobiles become increasingly quieter, the wiper operation noise becomes more noticeable by the customer. This paper deals with the experimental approach and the methodology to investigate the Friction induced wiping noise. Role of design in a wiper system plays a very imperative task in meeting the performance of wipers but at the same time it does not cater to the NVH issues. Some of the important design parameters which affect the NVH properties of the wiper system are highlighted in this paper. For better understanding of the system some of the best in class vehicles for SUV category were tested and compared with our test vehicle. In this study more importance given to analytical part which is more important to investigate and in depth study of the friction induced noise. For analytical study some techniques such as time frequency domain i.e. Wavelet transforms, frequency domain and time domain where extensively used.
Technical Paper

New Trends of Material & Heat Treatment in Automotive Transmission Shaft

2013-09-24
2013-01-2446
This paper deals with new trends in materials & heat treatment in automotive transmission shafting. The material is S48C a low carbon alloy steel and material for automotive shaft special significance as it reduces overall cost in vehicle transmission shafts. Conventional method of shaft heat heat-treatment is case hardening for 20MnCr5. S48C is low-carbon alloy steel. This is an alternate proposal to 20MnCr5.There are lot of advantages in induction hardening over case hardening. Also induction hardening process with S48C material becomes cheaper than case-hardening with 20MnCr5.Strength and resistance to stress must therefore be carefully considered during the material selection and heat-treatment process. We have done Static torsion test for 20MnCr5 (case hardened steel) and S48C (induction hardened shaft). Test results were comparable with 20MnCr5 (case hardened steel). Also after test a metallurgical inspection was done on an S48C (induction hardened shaft).
Technical Paper

Investigation on microstructure, mechanical and wear properties of alloyed gray cast iron for brake applications

2013-11-27
2013-01-2881
The strength and wear resistance of four alloyed cast irons with elements like Ni. Mo, Cu, Cr and Al have been compared and analyzed. The increased hardness is reducing the wear resistance of the alloy due to graphite flakes. Higher carbon produces more graphite flakes which act as weak points for reducing strength and wear resistance. The wear rate increases for harder cast iron sample with more graphite flakes. Wear rate drastically increases with increase in carbon equivalent. Strength was found to decrease for samples with higher graphite flakes. The wear debris consisted of graphite flakes in platelet like morphology along with iron particles from the matrix. The presence of carbon at the sliding interface also sometimes decreases wear rate.
Technical Paper

Effect of Varying Levels of Work Hardening and Bake Hardening on the Mechanical Properties of Dual Phase Steels

2023-05-25
2023-28-1331
In most cases, the properties of a metal are evaluated in their as rolled condition, prior to any work hardening or bake hardening. But in the Automotive World, these steels get work hardened during the forming process and bake hardened in the paint shop. The goal of this paper is to evaluate the variations in the performance of Dual Phase (DP) steels and understand the most optimized method of testing and property generation. This method can then be used to extrapolate to real automotive components. Dual Phase Steels or DP Steels contain a mixture of Ferrite & Martensite from which they derive their name. They are a part of the advanced high strength and ultra-high strength steels steel family according to World Auto Steels. The Ferrite phase, with its iron content contributes to the material displaying an increased level of ductility whilst, the martensitic phase provides the steel with increased mechanical strength.
Technical Paper

Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

2023-04-11
2023-01-0598
Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model.
Technical Paper

Optimization of Piston Skirt Profile Design to Eliminate Scuffing and Seizure in a Water Cooled Gasoline Engine

2015-04-14
2015-01-1726
Piston is a critical component of the engine as it exposed to high inertial and thermal loads. With the advent of high performance engines, the requirement of the piston to perform in extreme conditions have become quintessential. Piston scuffing is a common engine problem where there is a significant material loss at the piston and the liner, which could drastically affect the performance and the longevity of the components. This detrimental phenomenon would occur if the piston is not properly designed taking into consideration the thermal and structural intricacies of the engine. A water-cooled gasoline engine which had significant wear pattern on its piston skirt and liner was considered for this study. The engine block was made of aluminum alloy with a cast iron sleeve acting as liner. The piston-liner system was simulated through a commercially available numerical code which could capture the piston's primary and secondary motion.
Technical Paper

Study of Optimal Magnification for Retained Austenite Evaluation in Low carbon Case Hardening steel Using Metallurgical Microscopy

2014-04-01
2014-01-1017
This study on optimum magnification at which Retained austenite to be evaluated by comparing the difference in determining the retained austenite in low carbon carburizing alloy steel using the optical metallurgical micrographic method and X-ray diffraction method. The retained austenite phase will be in surface and color is white in nature also its presented in between the martensite needles. It can be distinguished as separate micro-constituents by using image analyzing software. In another method the RA measurements were carried out on the surface by PROTO iXRD Retained austenite measuring system using Cr K radiation. The (211) and (200) reflections of Martensite and (220) and (200) reflections of Austenite were made for this estimation. However, the calculated values of retained austenite by metallurgical microscope in different magnifications are not identical.
Technical Paper

Durability of Customer Perceived Quality of Molded-in-Color Car Bumper

2019-01-09
2019-26-0319
Customer perceived quality (CPQ) of the car is the impression of excellence that a customer experiences the brand through sight, sound, touch, and scent. Molded-in-color (MIC) bumper’s aesthetic appeal contributes significantly to the CPQ of the car. Typical parameters used to define CPQ are color, gloss, grain definition, grain depth, geometry and draft. In this work the durability of the color and gloss post ageing is understood by using analytical and characterization tools. Using the results of ageing characterization, an attempt has been made to understand the retained newness of MIC bumper.
Technical Paper

Effect of Aluminum on Mechanical and Tribological Properties of Automotive Grade Gray Cast Iron

2015-01-14
2015-26-0066
Mechanical and wear properties of Al alloyed gray cast iron (0.5% and 1.0%) were compared with that of Mo (1.0%) and Cu (0.77%) alloyed gray cast iron in this investigation. All the alloys showed pearlitic microstructure. The graphite morphology varied due to varying chemistry. The fracture surface showed “cabbage” like dimpled morphology indicating the predominant ductile fracture. It was found that the Mo containing cast iron show 25 to 30% higher strength and 6 to 7 times better wear resistance compared to Al containing cast irons. The worn surface showed oxide formation during sliding.
Technical Paper

Infrastructure Development and its Management for Future Sustainable Mobility

2016-02-01
2016-28-0252
This article delineates the importance of infrastructure and its related aspects on sustainability of transportation on global and local context. Almost 7% of the GDP in India is spent on transportation and 6% of the CO2 emissions in the world is due to transportation. In countries like India, the road transport has significantly grown over other forms of mobility. This articles introduces different forms of transportations that exists today and the importance of sustainability in transportation sector. Sustainable transportation depends on development of infrastructure to enable smart transport solutions involving intelligent transport system, electric mobility, information management, vehicle health monitoring, advanced traffic management system and driver assistance system in a vehicle. The challenges includes existing transport operations, environmental impact and complexity of existing transport network.
Technical Paper

Engineering Failure Analysis Methodology & Influence of Spline Cutting Method in Torsional Life Improvement in Tractor Axle Application

2023-05-25
2023-28-1318
The Tractors are inevitable in the world due to its remarkable contribution majorly in farming process and other applications. the farming equipment needs to perform multiple applications to enhance the productivity and increased horsepower demands all-wheel drive (Refer fig. 1) or four-wheel drive option in the tractor. So, it is becoming a mandatory feature. The main objective of this study is, improving the torsional fatigue life in front axle spindle shaft by modifying the spline design and optimizing induction hardening heat treatment process in such a way that the other part of the system will have a minor or no design change. It helps us to reduce the part count variability, lower manufacturing cost and development time.
Technical Paper

Alternate Manufacturing Process for Automotive Input Shafts

2017-10-13
2017-01-5013
The input shafts are conventionally developed through Hot forging route. Considering upcoming new technologies the same part was developed through cold forging route which resulting in better Mechanical properties than existing hot forging process. It has added benefit of cost as well as environmental friendly. Generally, the part like Input shaft which having gear teeth, splines etc., will be manufactured through Hot forging process due to degree of deformation, availability of press capacity, diameter variations etc., This process consumes more energy in terms of electricity for heating the bar and also creates pollution to the atmosphere. Automotive input shaft design modified to accommodate cold forging process route to develop the shaft with press capacity of 2500T which gives considerable benefit in terms of mechanical and metallurgical Properties, close dimensional tolerances, less machining time, higher material yield when compared to hot forging and metal cutting operation.
Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

Development of simulation methodology to evaluate Leaf Spring strength and predict the Leaf Interface stresses and correlating with test

2024-04-09
2024-01-2735
Leaf Springs are commonly used as a suspension in heavy commercial vehicles for higher load carrying capacity. The leaf springs connect the vehicle body with road profile through the axle & tire assembly. It provides the relative motion between the vehicle body and road profile to improve the ride & handling performance. The leaf springs are designed to provide linear stiffness and uniform strength characteristics throughout its travel. Leaf springs are generally subjected to dynamic loads which are induced due to different road profiles & driving patterns. Leaf spring design should be robust as any failure in leaf springs will put vehicle safety at risk and cost the vehicle manufacturer their reputation. The design of a leaf spring based on conventional methods predicts the higher stress levels at the leaf spring center clamp location and stress levels gradually reduce from the center to free ends of the leaf spring.
X