Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Investigation on the Effect of HVAC Power Consumption in Electric Vehicle Integrated with Thin Film Solar PV Panels

2021-09-15
2021-28-0122
Air conditioning systems are one of the significant auxiliary loads on the vehicle powertrain. In an Electric Vehicle (EV) where the available energy is limited, it becomes crucial to optimize the overall energy consumption of the auxiliary loads. The major power consuming components in an automotive HVAC system (Heating, Ventilation and Air Conditioning) are: Compressor, Cabin blower, Condenser cooling fan and the Control devices. Significant progress is already made in enhancing the energy efficiency of the above-mentioned power consuming components part of vehicle HVAC system. Alternate energy sources are being explored recently, to reduce the energy demand from vehicle. One such proposal is to harness the abundant solar energy available, through solar panels and consume this energy to supplement the power required for HVAC system components. Solar panels convert solar energy to electrical energy by the principle of the photovoltaic effect.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

An Optimal Method for Prediction of Engine Operating Points for an Effective Correlation in Fuel Economy Benchmarking

2020-09-25
2020-28-0346
It is imperative that all automobile manufacturers conduct vehicle level benchmarking at the initial stage of any new project. From the benchmark information, the manufacturers can set relevant targets for their own vehicles under development. In this regard, an accurate prediction of the engine operating points can improve the correlation of the measured fuel economy of the benchmark vehicle. The present work describes a novel method that can be used for the accurate prediction of the engine operating points of any benchmark vehicle. Since the idea of instrumenting the crankshaft/driveshaft with torque transducers is a costlier and time-consuming process, the proposed method can be effective in reducing the benchmarking. Hence, the objective of this work is to develop a mathematical model to calculate the real-time engine operating points (engine speed and torque) using parameters like vehicle speed, accelerator pedal map, driveline inertia, vehicle coastdown force and gradient.
Technical Paper

Generating a Real World Drive Cycle–A Statistical Approach

2018-04-03
2018-01-0325
Drive cycles have been an integral part of emission tests and virtual simulations for decades. A drive cycle is a representation of running behavior of a typical vehicle, involving the drive pattern, road characteristics and traffic characteristics. Drive cycles are typically used to assess vehicle performance parameters, perform system sizing and perform accelerated testing on a test bed or a virtual test environment, hence reducing the expenses on road tests. This study is an attempt to design a relatively robust process to generate a real world drive cycle. It is based on a Six Sigma design approach which utilizes data acquired from real world road trials. It explicitly describes the process of generating a drive cycle which closely represents the real world road drive scenario. The study also focuses on validation of the process by simulation and statistical analysis.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Design, Development and Experimental Investigation on the Effect of HVAC Power Consumption in Electric Vehicle Integrated with Thin Film Solar PV Panels

2021-10-01
2021-28-0234
Air conditioning systems are one of the significant auxiliary loads on the vehicle powertrain. In an Electric Vehicle (EV) where the available energy is limited, it becomes crucial to optimize the overall energy consumption of the auxiliary loads. The major power consuming components in an automotive HVAC system (Heating, Ventilation and Air Conditioning) are: Compressor, Cabin blower, Condenser cooling fan and the Control devices. Significant progress is already made in enhancing the energy efficiency of the above-mentioned power consuming components part of vehicle HVAC system. Alternate energy sources are being explored recently, to reduce the energy demand from vehicle. One such proposal is to harness the abundant solar energy available, through solar panels and consume this energy to supplement the power required for HVAC system components. Solar panels convert solar energy to electrical energy by the principle of the photovoltaic effect.
Technical Paper

Holistic Design Approach of Rocker Arm in Aluminum, Sheet Metal & Plastic Materials for Heavy Duty Commercial Application

2023-04-11
2023-01-0440
Diesel engines are known for their excellent low-end torque, better drivability, performance, and better fuel economy. The increase in customer demands pushes to deliver higher power and torque along with fuel economy. This requirement puts a great challenge on the overall weight of the engine. This paper explains the holistic approach followed along with optimizing the rocker arm cover to achieve the weight target without compromising on durability and cost in the commercial segment 2.5-liter Diesel Engine. This paper presents a complete overview of the design and development of Rocker Arm (RA) cover to meet Strength, Durability, NVH and Aesthetic in Commercial Engine where base design is in aluminum which is mounted on cylinder head with a separate breather system. From aluminum the base design of Rocker arm cover is optimized to sheet metal where in there is reduction of 43% in weight and cost saving of 13%.
Technical Paper

Optimum design of a Tractor hydraulics system by innovative material development and Correlation with physical testing

2023-04-11
2023-01-0877
The tractor usage is growing in the world due to derivative of rural economy and farming process. It needed wide range of implements based on the applications of the customer. The tractor plays a major role in Agricultural and Construction applications. In a tractor, hydraulic system is act as a heart of the vehicle which controls the draft and position of the implement. Hydraulic system consists of Powertrain assembly, 3-point linkage and DC sensing assembly. The design of hydraulic powertrain assembly is challenging because the loads acting on the system varies based on the type of implement, type of crop, stage of farming and soil conditions etc., Hydraulic powertrain assembly is designed based on standards like IS 12207-2019 which regulates the test methods for the system based on the lift capacity of the tractor. In this paper, virtual simulation has been established to optimize the design and perform the test correlation.
Technical Paper

Light Weight Composite Structure Approach of Automotive Soft Top Construction

2023-04-11
2023-01-0876
In an off-road vehicle, Vehicle Structure plays a major role in passenger safety, Aesthetics, Durability, through a validated construction of canopy structure. This structure is to maintain the shape of the vehicle and to support various loads acting on the vehicle. In present market a safe, Durable, Robust, Waterproof, Noise less, Light weight and cost-effective off-road vehicle will always be a delight for any customer. However, the current conventional way of Soft top vehicle structure use metal brackets and formed sheet parts to create a structure to retain the canopy shape in place. These conventional structures are often heavier and would have many demerits such as heavy weight, Corrosion, Risk of canopy tear due to metallic structure edges and inappropriate draining, water management. Considering this we replaced the heavy metal brackets in to blow molded plastic parts.
Technical Paper

Reduction of Diesel Engine Combustion Noise through Various Injection Strategies

2019-01-09
2019-26-0211
The contribution of engine borne noise is the major source of vehicle noise in diesel powered vehicles. The engine noise can be minimized by modification of engine components design and also with different acoustic abatement techniques. The research activities were carried out on 4-cylinder CRDe engine for SUV application. All the emission and performance parameters along with combustion noise was captured continuously for all the part load points from 1000 RPM to 2750 RPM with respect to the different road conditions and driving cycle. This paper targets on reducing the combustion noise at the noise prone zones only on the basis of the injection strategies ensuring no ill effect on the emissions and fuel economy. The first step was the reduction of rail pressure which helped noise levels to be reduced by almost 6 dB at noise zones. Main injection timing retardation was tried at all possible zones which influenced in considerable noise reduction at various zones.
Technical Paper

Light Weight Material for Entry Assist Grab Handle with Gas Assist Technology

2023-04-11
2023-01-0875
Ground clearance plays a vital role in an off-road vehicle during off roading. Higher the ground clearance, higher is the difficulty during ingress & egress of the vehicle. This brings in the necessity to provide entry-assist grab-handles for vehicle with more ground clearance (>200mm). Entry-assist grab handles alleviates the pain of the occupants during ingress and egress. For entry-assist grab handles’ purpose to be served, it should provide comfortable ergonomic grip & have to take the load of passengers while ingress or egress through-out the complete life cycle of the vehicle. Entry Assist grab handles can be fitted on A-Pillar zone to assist first row passengers & on B-pillar zone to assist second row passenger. Providing entry-assist grab handles on pillar trims make the grab-handles exposed to head-impact zone and hence, in most of the cases, it should pass the head impact regulations framed for respective countries.
Technical Paper

Method Development to Virtually Validate Farm Tractor Skid for Front End Loader Application

2019-01-09
2019-26-0080
In farm tractors, front end loaders are becoming popular attachments for primarily material handling such as loading, moving and unloading of woodchips, sand, gravels etc. It is also used for some severe load application such as tree uprooting and ripping operation which requires validation of loader frame and tractor as well. To validate the design, a standard pull-push test is carried out on tractor with loader in a laboratory. In this test front loader bucket is pushed against a rigidly clamped fixture with full engine throttle and maximum hydraulic cylinder pressure of loader. To avoid surprise failures during the test, a virtual simulation method needs to be developed and validated. In this paper, a method has been proposed by authors for the above objective. A multi-body dynamics model of tractor with loader is created in MSC ADAMS and actual event is simulated using test loads & boundary conditions.
Technical Paper

Methodology to Recognize Vehicle Loading Condition - An Indirect Method Using Telematics and Machine Learning

2019-01-09
2019-26-0019
Connected vehicles technology is experiencing a boom across the globe. Vehicle manufacturers have started using telematics devices which leverage mobile connectivity to pool the data. Though the primary purpose of the telematics devices is location tracking, the additional vehicle information gathered through the devices can bring in much more insights about the vehicles and its working condition. Cloud computing is one of the major enabled for connected vehicles and its data-driven solutions. On the other hand, machine learning and data analytics enable a rich customer experience understanding different inferences from the available data. From a fleet owner perspective, the revenue and the maintenance costs are directly related to the usage conditions of the vehicle. Usage information like load condition could help in efficient vehicle planning, drive mode selection and proactive maintenance [1].
Technical Paper

A Study on the Repeatability of Vehicle Ride Performance Measurements

2019-01-09
2019-26-0076
Across the automotive industries, objective measurements and subjective assessment of vehicle ride performance are routinely carried out during development as well as validation phase. Objective measurements are receiving increased attention as they are generally believed to offer a higher degree of objectivity and repeatability compared to the subjective assessment alone. Typical industry practices include the acquisition of vehicle-occupant vibrational response on specified road sections, test surfaces on proving grounds or in a controlled input environment such as four-poster test rig. In presented work, a study is performed on the repeatability of vehicle ride performance metrics such as weighted RMS acceleration and frequency responses using the data acquired in repeated trials conducted using three different sports utility vehicles (SUVs) on a sufficiently long designated road section.
Technical Paper

BIW Resistance Spot Weld Parameter Standardization through Parameter Optimization across Various Sheet Metal Panel Combinations

2018-07-09
2018-28-0034
Body in White (BIW) is one of the critical aggregates of an automobile. Establishing the quality parameters during body manufacturing is essential to achieve robust BIW structure. Spot weld integrity and dimensional accuracy are the two major quality parameters of a BIW. Weld integrity plays an important role in achieving dimensional accuracy and structural stability. Various combinations of sheet metals are joined together to form a BIW structure. Spot weld parameter selection is one of the critical activity and needs to be programmed for the various combinations of sheet metals. Weld parameter for the various combinations are calculated with the resistance of the joining sheet metals thicknesses. The calculated parameters are validated with the coupon test (or) peel test and it requires several iterations to establish weld integrity of the different combinations and the selected parameters get registered in the weld controller.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Effect of Gear Shift Indicator Technique Enhancing Improved Fuel Economy on SUV

2018-07-09
2018-28-0054
Improving the fuel economy of the vehicle resulting in energy conservation on long run is a challenging task in the automotive field without compromising the emission margins. Fuel economy improvement by effective driving is the main focus of this paper by the proper utilization of gears which can enable good fuel economy even when the vehicle is driven by different drivers. GSI technique was implemented on Sports utility vehicle operating with 2.2 l engine. Tests were carried with GSI and the effect of fuel consumption and emissions were compared to the regular driving cycle. Optimization of various gear shifting points were analyzed and implemented for better fuel economy keeping the drivability in mind, meeting the BS4 emission norms comfortably. The experiments were carried out in both cold and hot conditions to check the effect of GSI and positive results of fuel economy improvement was yielded.
Technical Paper

Cost and Weight Efficient Differential Housing for Off-Road Vehicles

2016-02-01
2016-28-0133
Differential in Gear Box play vital role in Tractors for assisting it in turning and also to take straight path. Light weight machine always have advantage in terms of fuel economy and performance. Weight optimized rotating part have additional benefits of saving power loss, against stationary dead weight. Differential Housing is such a part, which rotates during the vehicle motion and torque transmission. [1] This paper describes a method by which weight of the Differential Housing is optimized. In this particular body of work, additional constraints of avoiding any change in existing cold forged parts like Bevel Gear & Pinion. This also have additional benefit of enhanced flow of Oil inside Differential Housing for better lubrication of Bevel Gears and Pinion. This resulted in weight saving of Differential Housing and finally fuel economy of Tractor.
X