Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Technical Paper

Modeling NO Formation in Spark Ignition Engines with a Layered Adiabatic Core and Combustion Inefficiency Routine

2001-03-05
2001-01-1011
A thermodynamic based cycle simulation which uses a thermal boundary layer, either, a fully mixed or layered adiabatic core, and a crevice combustion inefficiency routine has been used to explore the sensitivity of NO concentration predictions to critical physical modeling assumptions. An experimental database, which included measurements of residual gas fraction, was obtained from a 2.0 liter Nissan engine while firing on propane. A model calibration methodology was developed to ensure accurate predictions of in-cylinder pressure and burned gas temperature. Comparisons with experimental NO data then showed that accounting for temperature stratification during combustion with a layered adiabatic core and including a crevice/combustion inefficiency routine, improved the match of modeling predictions to data, in comparison to a fully mixed adiabatic core.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Modeling of Engine-Out Hydrocarbon Emissions for Prototype Production Engines

1995-02-01
950984
A model has been developed which predicts engine-out hydrocarbon (HC) emissions for spark-ignition engines. The model consists of a set of scaling laws that describe the individual processes that contribute to HC emissions. The model inputs are the critical engine design and operating variables. This set of individual process scaling relations was then calibrated using production spark-ignition engine data at a fixed light-load operating point. The data base consisted of engine-out HC emissions from two-valve and four-valve engine designs with variations in spark timing, valve timing, coolant temperature, crevice volume, and EGR, for five different engines. The model was calibrated separately for the three different engines to accommodate differences in engine design details and to determine the relative magnitudes of each of the major sources. A good fit to this database was obtained.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

Time-Resolved Measurements of Hydrocarbon Mass Flowrate in the Exhaust of a Spark-Ignition Engine

1972-02-01
720112
Experimental measurements of the instantaneous exhaust gas temperature, mass flowrate, and hydrocarbon concentration have been made in the exhaust of a single cylinder research engine. The temperature measurements were accomplished using an infrared optical technique and observing the radiation of the exhaust gas at the 4.4 μm band of CO2. Instantaneous exhaust gas mass flowrates were monitored by placing a restriction in the exhaust manifold and measuring the instantaneous pressures across the restriction. Time-resolved hydrocarbon concentrations were measured using a fast-acting sampling valve with an open time of 2 ms. From these measurements, the hydrocarbon mass flowrate is calculated as a function of crank angle.
Technical Paper

Time Resolved Measurements of Exhaust Composition and Flow Rate in a Wankel Engine

1975-02-01
750024
Measurements were made of exhaust histories of the following species: unburned hydrocarbons (HC), carbon monoxide, carbon dioxide, oxygen, and nitric oxide (NO). The measurements show that the exhaust flow can be divided into two distinct phases: a leading gas low in HC and high in NO followed by a trailing gas high in HC and low in NO. Calculations of time resolved equivalence ratio throughout the exhaust process show no evidence of a stratified combustion. The exhaust mass flow rate is time resolved by forcing the flow to be locally quasi-steady at an orifice placed in the exhaust pipe. The results with the quasi-steady assumption are shown to be consistent with the measurements. Predictions are made of time resolved mass flow rate which compare favorably to the experimental data base. The composition and flow histories provide sufficient information to calculate the time resolved flow rates of the individual species measured.
Technical Paper

Performance and NOx Emissions Modeling of a Jet Ignition Prechamber Stratified Charge Engine

1976-02-01
760161
The development of a cycle simulation model for the jet ignition prechamber stratified charge engine is described. Given the engine geometry, load, speed, air-fuel ratios and pressures and temperatures in the two intakes, flow ratio and a suitable combustion model, the cycle simulation predicts engine indicated efficiency and NO emissions. The relative importance of the parameters required to define the combustion model are then determined, and values for ignition delay and burn angle are obtained by matching predicted and measured pressure-time curves. The variation in combustion parameters with engine operating variables is then examined. Predicted and measured NO emissions are compared, and found to be in reasonable agreement over a wide range of engine operation. The relative contribution of the prechamber NO to total exhaust NO is then examined, and in the absence of EGR, found to be the major source of NO for overall air-fuel ratios leaner than 22:1.
Technical Paper

Contribution of Liquid Fuel to Hydrocarbon Emissions in Spark Ignition Engines

2001-09-24
2001-01-3587
The purpose of this work was to develop an understanding of how liquid fuel transported into the cylinder of a port-fuel-injected gasoline-fueled SI engine contributes to hydrocarbon (HC) emissions. To simulate the liquid fuel flow from the valve seat region into the cylinder, a specially designed fuel probe was developed and used to inject controlled amounts of liquid fuel onto the port wall close to the valve seat. By operating the engine on pre-vaporized Indolene, and injecting a small amount of liquid fuel close to the valve seat while the intake valve was open, we examined the effects of liquid fuel entering the cylinder at different circumferential locations around the valve seat. Similar experiments were also carried out with closed valve injection of liquid fuel at the valve seat to assess the effects of residual blowback, and of evaporation from the intake valve and port surfaces.
X