Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Technical Paper

Spot Friction Welding of Aluminum to Steel

2007-04-16
2007-01-1703
Spot friction welding (SFW) is a cost-effective spot joining technology for aluminum sheets compared with resistance spot welding (RSW) [1]. In this study, coated mild steel was spot friction welded to 6000 series aluminum using a tool with shoulder diameter of 10 mm and welding conditions of 1500-2000 rpm and time of 5 s. Testing showed that tensile shear strength increased as the solidus temperature of the coating on the steel decreased. Microstructure characterizations of steel/Al joint interfaces showed that zinc from the coatings was incorporated into the stir nuggets and that intermetallic phases may have formed but not in continuous layers. Some Al-Zn oxides that appeared to be amorphous were also found in the joint interfaces.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

The Use of Semi-Solid Rheocasting (SSR) for Aluminum Automotive Castings

2003-03-03
2003-01-0433
Semi-solid metal (SSM) casting has long been identified as a high-volume process for producing safety-critical and structural automotive castings, but cost and complexity issues have limited its widespread commercial acceptance. Rheocasting, an SSM process that creates semi-solid slurry directly from liquid metal, eliminates the cost disadvantages of the process. However, the majority of rheocasting processes are complex and difficult to operate in the foundry environment. Recent work at MIT has led to the fundamental discovery that application of heat removal and convection as a molten alloy cools through the liquidus creates a non-dendritic, semi-solid slurry. A new process based on this understanding, S.S.R.™ (Semi-Solid Rheocasting), simplifies the rheocasting process by controlling heat removal and convection of an alloy during cooling using an external device. Solution heat treatable castings have been produced in a horizontal die casting machine with the S.S.R.™ process.
Technical Paper

Mazda New Lightweight and Compact V6 Engines

1992-02-01
920677
Mazda has developed new-generation V6 engines. The new V6 series comprises 2.5-litre, 2.0-litre and 1.8-litre engines. The development objective was to ensure high output performance for excellent “acceleration and top-end feel”, while satisfying “Clean & Economy” requirements. The engines also had to have a pleasant sound. Mazda selected for these engines a short stroke, 60° V-shaped 24 valve DOHC with an aluminum cylinder block. Various techniques are adopted as follows: Combustion improvement and optimization of control to achieve high fuel economy and low emissions Improvement of volumetric efficiency, inertia reduction of rotating parts and optimization of control to achieve excellent “acceleration and top-end feel” Adoption of a high-rigidity, two-piece cylinder block and crankshaft and weight reduction of reciprocating parts to achieve a pleasant engine sound Material changes and elimination of dead space to achieve a compact, lightweight engine
Technical Paper

Investigating the Effect of Intake Manifold Size on the Transient Response of Single Cylinder Turbocharged Engines

2017-09-04
2017-24-0170
This paper evaluates the lag time in a turbocharged single cylinder engine in order to determine its viability in transient applications. The overall goal of this research is to increase the power output, reduce the fuel economy, and improve emissions of single cylinder engines through turbocharging. Due to the timing mismatch between the exhaust stroke, when the turbocharger is powered, and the intake stroke, when the engine intakes air, turbocharging is not conventionally used in commercial single cylinder engines. Our previous work has shown that it is possible to turbocharge a four stroke, single cylinder, internal combustion engine using an air capacitor, a large volume intake manifold in between the turbocharger compressor and engine intake. The air capacitor stores compressed air from the turbocharger during the exhaust stroke and delivers it during the intake stroke.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

Development of Simultaneous Zinc Phosphating Process for Aluminum and Steel Plates

1993-11-01
931936
A method was studied for simultaneous zinc phosphating on aluminum and steel surfaces to obtain high corrosion resistance on aluminum surfaces, which conventional phosphatic processing could not provide with sufficient corrosion resistance. Since aluminum is protected by an oxide film on its surface, it has poor processability with zinc phosphating solutions applied to steel. An appropriate quantity of fluoride was therefore added to improve processing, and the coating film, aluminum composition and surface conditions were optimized to suppress filiform corrosion, which is characterized by string-like blisters of paint film starting from a paint defect. In addition, in view of the actual production environment, the corrosion resistance of the ground area made for readjustment after stamping was studied for the optimization of the processing solution.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

Development of Magnesium Forged Wheel

1995-02-01
950422
Magnesium has the lowest specific gravity of all metals used for structural members. The application of magnesium for a road wheel leads to improved vehicle handling and drivability because of the reduction of an unsprung weight. The authors have developed new magnesium alloy which shows excellent mechanical properties and attained a magnesium forged road wheel that is 30% lighter than aluminum wheels.
Technical Paper

Development of Disk Brake Rotor Utilizing Aluminum Metal Matrix Composite

1997-02-24
970787
Disk brake rotors require reduced unsprung weight and improved cooling ability for improved fade performance. Automotive brake rotors made from aluminum metal matrix composites (MMC) were evaluated by dynamometer and vehicle tests for the required improvement. The friction and wear performance and the thermal response during fade stops were compared with those of commercially produced gray cast iron (GCI) rotors. It was proved that MMC is a very effective material to replace GCI for brake rotor application, as it reduces unsprung weight and decreases maximum operation temperature of the brake system.
Technical Paper

Application of Aluminum Honeycomb Sandwiches and Extrusions in a Convertible: Part 1: Design and Performance of a Prototype

1987-02-01
870147
Aluminum Honeycomb Sandwiches and Extrusions have been applied to a platform for convertibles. The platform, composed of a dashpanel and floor panels (honeycomb sandwiches) and a framework (extrusions), has a much more lightweight and rigid structure than other conventional convertible bodies-in-white. This improves remarkably vibrational behavior and handling characteristics, which deteriorate in a convertible, in the case of a prototype.
Technical Paper

Novel Near-Net-Shape Tool-Less Method for Manufacturing of Cast Metal Matrix Composites: Three-Dimensional Printing (3DP) of Ceramic Preforms Combined with Investment Casting Technology

2000-03-06
2000-01-0675
New three-dimensional printing technology (3DP) developed at MIT was tried as a manufacturing method to fabricate ceramic preforms for a discontinuously reinforced metal matrix composites. Minor modifications to the “legacy” 3DP technology allowed to produce such preforms successfully. Preforms were then infiltrated with liquid aluminum resulting in composite materials as strong as produced via conventional methods. Net shape connecting rod preforms were 3D-printed and used to produce composite connecting rods without building any molds or tooling using novel Tool-less Mold™ technology.
Technical Paper

A New Design for Automotive Alternators

2000-11-01
2000-01-C084
This paper introduces a new design for alternator systems that provides dramatic increases in peak and average power output from a conventional Lundell alternator, along with substantial improvements in efficiency. Experimental results demonstrate these capability improvements. Additional performance and functionality improvements of particular value for high-voltage (e.g., 42 V) alternators are also demonstrated. Tight load-dump transient suppression can be achieved using this new design and the alternator system can be used to implement jump charging (the charging of the high-voltage system battery from a low-voltage source). Dual-output extensions of the technique (e.g., 42/14 V) are also introduced. The new technology preserves the simplicity and low cost of conventional alternator designs, and can be implemented within the existing manufacturing infrastructure.
Technical Paper

Analyzing the Limitations of the Rider and Electric Motorcycle at the Pikes Peak International Hill Climb Race

2019-04-02
2019-01-1125
This paper describes a post-race analysis of team KOMMIT EVT’s electric motorcycle data collected during the 2016 Pikes Peak International Hill Climb (PPIHC). The motorcycle consumed approximately 4 kWh of battery energy with an average and maximum speed of 107 km/h and 149 km/h, respectively. It was the second fastest electric motorcycle with a finishing time of 11:10.480. Data was logged of the motorcycle’s speed, acceleration, motor speed, power, currents, voltages, temperatures, throttle position, GPS position, rider’s heart rate and the ambient environment (air temperature, pressure and humidity). The data was used to understand the following factors that may have prevented a faster time: physical fitness of the rider, thermal limits of the motor and controller, available battery energy and the sprocket ratio between the motor and rear wheel.
Technical Paper

Structural Designs for Electric Vehicle Battery Pack against Ground Impact

2018-04-03
2018-01-1438
Ground impact caused by road debris can result in very severe fire accident of Electric Vehicles (EV). In order to study the ground impact accidents, a Finite Element model of the battery pack structure is carefully set up according to the practical designs of EVs. Based on this model, the sequence of the deformation process is studied, and the contribution of each component is clarified. Subsequently, four designs, including three enhanced shield plates and one enhanced housing box, are investigated. Results show that the BRAS (Blast Resistant Adaptive Sandwich) shield plate is the most effective structure to decrease the deformation of the battery cells. Compared with the baseline case, which adopts a 6.35-mm-thick aluminum sheet as the shield plate, the BRAS can reduce the shortening of cells by more than 50%. Another type of sandwich structure, the NavTruss, can also improve the safety of battery pack, but not as effectively as the BRAS.
X